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Encryption is

– doing on-line banking and
shopping

– talking on cell phones

– watching satellite TV and  pay-
per-view movies

• a tool for achieving data-privacy,

• is very important nowadays,

• used by many people, often without realizing
it, when:



On-line shopping, banking rely on encryption

SSL protocol ensures privacy of communicated
data (uses RSA-OAEP encryption scheme [BR])



Two settings
1. Symmetric-key setting
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2.  Asymmetric (public-key) setting
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How can we be confident that a given
encryption scheme is secure?

An attack
found

yes

Insecure ?

no
Try to find an attack

Prove security (the
absence of attacks)
under some assumptions

An attack
found

yes

Assumption
was false



What does “security” mean?

Can be true if all but the
last bit are leakedthe plaintext

Any partial information
about the plaintext

etc.etc.

Can be true if the
plaintext is sent in the

clear
the secret key

But…
Security means that given a

public key and a ciphertext it is
infeasible to recover:



Encryption security definition, IND-CPA [GM]
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Adversary wins if
b=d

Mb
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An encryption scheme Π is IND-CPA in the single user
setting if for any PPT adversary A,                       is
negligible in k.

1-ind-cpa

A,Adv (k)!

1-ind-cpa

A,Adv (k)=2Pr[win]-1!

Probability is over coins of G,K,E,A
and choice of b.

G Kk I (pk,sk) Π=(G,K,E,D)



Why IND-CPA?

The definition guarantees that the secret key, plaintexts, or
any partial information about the plaintexts are not leaked.



IND-CPA is not always enough

Bleichenbacher’s attack on a previous version of SSL:

C'
“invalid ciphertext!”

C''
“invalid ciphertext!”

C=E
pk (Alice's session key)

      OKC'''
          OK

C'''''''''
  “invalid ciphertext!”

pk

Alice's session key



Encryption security definition, IND-CCA
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A M0,M1

d

Epk(•)

C=Epk(Mb)

1-ind-cca

A,Adv (k)=2Pr[win]-1!

A is not allowed to query
C to Dsk(•)
A wins if  b=d

An encryption scheme Π is IND-CCA in the single user
setting if for any PPT adversary A,
is negligible in k.

Mb
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1-ind-cca
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Dsk(•)

G Kk I (pk,sk) Π=(G,K,E,D)



Proven secure schemes

ODH

One-wayness of RSA, RO

DDH

Decision Diffie-Hellman
(DDH)

Proven assuming

IND-CPAElGamal

IEEE
P1363aIND-CCADHIES [ABR]

PKCS #1 2.1IND-CCARSA-OAEP [BR]

IND-CCACramer-Shoup

UsageSecurityScheme



Data-privacy in the multi-user setting



Motivation

All provably-secure encryption schemes are proven secure
in the single-user setting

pkC

Sender
Receiver

Person with a public key, able
to receive ciphertexts

All ciphertexts seen by the adversary are under a single
public key
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But the single-user setting is very different from practice,
where there are many users sending each other
encrypted messages:



Plain RSA encryption [RSA]

Return k

G(k)
k∈Ν

M← Cd mod N
Return M

C ← Me mod N
Return C

p,q ← k-bit primes
N ← p·q
e ← Ζ*
d ← Ζ*
s.t. e·d≡1 mod (p-1)(q-1)
pk ← (N, e)
sk ← (N, d)
Return (pk, sk)

Dsk(C) Epk(M)
M∈ΖN

K(k)

(p-1)(q-1)

(p-1)(q-1)

$

$

*

Cd = M                       C = Me

easy

easy given d
hard not given d

Believed to be one-way:



Håstad-type attack on Plain RSA
Plain RSA: pk=(N, e); Epk(M)=Me mod N

C1 = M3 mod N1
C2 = M3 mod N2
C3 = M3 mod N3

C1, C2, C3, pk1, pk2, pk3

If N1,N2,N3 are relatively
prime then by Chinese
Remainder Theorem can
combine

to find C = M3 mod N1 N2 N3

Since M3 < N1 N2 N3 then

M ← √ C3

pk2=(N2 , 3)

M
pk1=(N1, 3)

pk3=(N3 , 3)

C1 = M3 mod N1

C
3 = M 3 mod N

3

C
2 = M3 mod N

2



• Plain RSA:
– Is one-way in the single-user setting.
– Is not one-way in the multi-user setting.
– However, it is not IND-CPA in the single-

user setting.



Plain RSA is not IND-CPA secure

(as well as any deterministic scheme Π)

1Adv ( ) 1t =

A always wins,
1Adv (A) 1=

pk
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d
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Epk(Mb)

Mb

b

If Epk(M0)=C
then d←0
else d←1



A crucial question
Are the “provably-secure” schemes (e.g. ElGamal,
RSA-OAEP) really secure in the practical (multi-
user) setting?

To answer this one needs to define security in the
multi-user setting



Towards a security definition for encryption in the
multi-user setting
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Danger: the adversary can see encryptions of
related messages under different public keys.



Security definition (many users, CPA) [BBM]
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An encryption scheme Π is IND-CPA
in the multi-user setting if for any
polynomial n and PPT adversary A,

 is negligible in k.

Adversary wins if  b = d
n-ind-cpa
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Reminder

attack type resourses of attacAdv ( ker)

Small = good

Big = bad

= max probability of any attacker breaking the scheme



General reduction [BBM]

Corollary. Encryption schemes polynomially-secure in
the single-user setting are polynomially-secure in the
multi-user setting.

n 1Adv ( , ) Adv ( )
ee
q tnt q ! " #

Theorem. Let Π = (K, E, D) be a public-key encryption
scheme. Then

where t’≈t



General reduction

• implies schemes like El Gamal, RSA-OAEP
are polynomially-secure in the multi-user
setting.

• shows benefits of targeting strong, well-
defined security definitions in the single-user
setting: security in extended settings follows
automatically.



The need for concrete security improvements

Consider a public-key encryption scheme Π
with

Assume in a real setting the number of users
n = 200 000 000.

Allow qe = 230 messages be encrypted under
each public key.

Then n ( , )Adv 0.2t q !

1 60( 2A v )d t
!

"#



Tightness of the general reduction

Question. Is there a better reduction? No!

Proposition. [BBM] There exists a public-key
encryption scheme Π with

n 1Adv ( , ) ( ) Adv ( )
e e

t q q n t!=" #

So, loss in security cannot be prevented in
general. But we can hope to do better for
specific schemes.



ElGamal encryption scheme

x ← Ζp

X ← gx

pk ← (g, p, X)
sk ← (g, p, x)
Return (pk, sk)

K(I)

K ← Yx

M ←  T·K-1

Return M

r ← Ζp

Return (gr, Xr ·M )

p ← k-bit prime
g ← generator of a
group G of order p
Return (g, p)

Dsk (C)Epk (M)
M∈G

G(k)
k∈Ν

$ $



ElGamal in the multi-user setting

Our general reduction implies

n 1Adv ( , ) 2 Adv ( )
e e

qt nq t!" #

Theorem [BBM]: improved reduction

n 1 1
Adv ( , ) 2Adv ( )

e
t q t

p
!" +

ElGamal scheme in the multi-user setting
as secure as it is in the single user
setting



Towards better efficiency of encryption in the
multi-user setting



Consider a scenario where a sender needs to
encrypt messages for several recipients:
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Simple solution
Sender

Receiver 1
pk1
M1

C1

Receiver 2C2

Receiver n

E
coins1

pk2
M2 E

coins2

Cn
pkn
Mn

E
coinsn

• Computational cost is n times that of the standard scheme

• Total length of all ciphertexts C1,..,Cn has size n times the size
of a ciphertext in the standard scheme

• Can we do it more efficiently?



An application. Pay-TV.

DirectTV

Encrypted messages are being broadcast such that
only legitimate recipients can decrypt them.

It is desirable to shorten the broadcast communication



MRES
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Naïve MRES
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Our suggestion
We suggest a possibility to “reuse” random coins used in the naïve
MRES encryption:

We call such schemes Randomness
Reusing MRES (RR-MRES)
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Why are RR-MRESs interesting?

Sender

EGEGpk1=
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Receiver 1

Receiver 2

Receiver n

Consider ElGamal-based RR-MRES: 



• Half the number of exponentiations used by the naive ElGamal-
based MRES.

• If ciphertexts are broadcast, need only send
which is half the length of the broadcast vector for the naive MRES.

• Saving 50% in computation is important: exponentiations are still
relatively slow operations, people struggle to get any improvements.

• Our results serve as a proof of concept, people could try to achieve
even better savings.

1 nr

1 n

xr x r
(g ,g M ,.., g M )! !

Why are RR-MRESs interesting?



But are these schemes secure?

• To analyze security of MRESs one needs an
appropriate security definition.
– The security definitions for the multi-user setting

are incompatible with syntax of MRESs.
– New types of attacks arise in the multi-recipient

setting.



What should an adversary be allowed to do?

• An adversary can see encryptions of related
messages under different public keys

• An adversary can be one of the recipients:

– Learn the corresponding secret key, decrypt the
ciphertexts

– Register its own public key, which possibly
depends on public keys of honest users



Rogue-key attacks: An example
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Towards a security definition for MRESs

• Our model allows an adversary to corrupt some recipients
and obtain their secret keys.

• The model also allows an adversary to choose public keys of
corrupted recipients as a function of the public keys of honest
recipients.

• But: Only if it also outputs valid corresponding secret keys.
This abstraction avoids consideration of explicit proofs of
knowledge of secret keys, which are done (should be done)
when users register their public keys with the CAs.

• Security requires it still be unable to obtain even partial
information about messages sent to uncorrupted recipients.



MRESs security definition (against CPA) [BBS]
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The possibility of insider and rogue-key attacks exists for both
standard and multi-recipient encryption schemes.

The definition of security for MRESs takes them into account while
the one for encryption in the multi-user setting does not. Why?

It is not necessary:

Claim. For ATK∈{CPA,CCA}, an encryption scheme AS is IND-ATK
in the multi-user setting iff AS-based naïve MRES is IND-ATK in the
multi-recipient setting.



Not all RR-MRESs are secure. Example. RSA-OAEP

RSARSA

M

coins=r

M

pk1=(3,N1)

pk2=(3,N2)

M

pk3=(3,N3)
3

3 3( ; ) mod  C O E rA P M N=

3

2 2 ( ; ) mod  C OAEP rM N=
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1 1( ; ) mod  C O E rA P M N=
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OAEP(M;r)

  M



To facilitate finding secure RR-MRESs

Reproducibility
Test

Standard secure
encryption
scheme

RR-MRES
is secure

Y:

N: it may not be

Avoids case-by-case security analysis of MRESs.

we suggest a special test: 



Reproducibility test and theorem

A standard encryption scheme AE  is reproducible if ∃ a
PPT algorithm R:

R
pk, C=Epk(M;r)

pk’,sk’,M’

C’=Epk’(M’;r)

1.  reproducible

2.  IND-ATK secure

then the corresponding RR-MRES  is IND-ATK secure.

Theorem. For ATK∈{CPA,CCA}, if a standard encryption
scheme AE is



Security of ElGamal-based RR-MRES

Lemma. El Gamal encryption scheme EG is reproducible.

Proof.
Rpk=gx, C=(gr,gxr·M)

pk’=gx’,sk’= x’,M’

C’
C’=(gr,(gr)x’·M’)

Fact. DDH is hard => EG is IND-CPA secure

Corollary.

El Gamal-based RR-
MRES is IND-CPA secure

Lemma
+
Fact
+
Reproducibility
theorem

=>



Anonymity (key-privacy) in the multi-user
setting
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Anonymity (key privacy)

• Data privacy was considered the sole goal of encryption

• Key privacy is another, previously overlooked goal

pk2

R1pk1

Rnpkn

NamePublic key

x=2, => R2
is in Lyon

C = Epk2(M)

This property of encryption is
required be various protocols,
such as anonymous credentials,
mix-nets, private keyword search,
etc.



RSA is not anonymous

If C > N1, then it’s a ciphertext addressed to R2

R1pk1=(e1,N1)
R2pk2=(e2,N2)

NamePublic key Epk (M): Me mod Ni
i

The same attack applies to all popular variations of RSA
scheme, including RSA-OAEP.

i



Anonymity. [BBDP] Summary of contributions

• Defined an appropriate security definition

• Proved that ElGamal and Cramer-Shoup
provide anonymity under the same
assumptions they provide data-privacy

• Show how to modify RSA to provide
anonymity
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