On the strongly generic undecidability of the halting problem

Alexander N. Rybalov Omsk State University rybalov@omskreg.ru

November 21, 2005

The halting problem (HP)

- Input: A Turing machine M
- Output:

YES if M halts on $\delta(M)$

NO if M does not halt on $\delta(M)$

here δ is some effective coding of Turing machines by binary strings

Question 1 Is there an algorithm deciding HP?

Theorem 1 (Classics) *HP is algorithmically undecidable.*

Generic-case version of the HP

• Input: "Almost every" Turing machine M

• Output:

YES if M halts on $\delta(M)$

NO if M does not halt on $\delta(M)$

Question 2 Is there an algorithm deciding HP for "almost all" inputs?

Question 3 What does it mean "almost all"?

Asymptotic density of sets of programs

- P is the set of all Turing machines
- P_n is the set of all *n*-state machines
- *B* is some set of Turing machines
- **Definition 1** Asymptotic density of *B* is $\mu(B) = \overline{\lim_{n \to \infty}} \frac{|B \cap P_n|}{|P_n|}.$

The number of all *n*-state programs

Working alphabet is $\Sigma = \{0, 1, \Box\}$. Machine can move the head to left and to right cell of the tape. Every *n*-state program contains 3nrules of type

$$(q_i, a) \rightarrow (q_j, b, s),$$

for every state q_i , i = 1, ..., n and every symbol $a \in \Sigma$. Here $a, b \in \Sigma$, $s \in \{L, R\}$ and q_j may be final state.

This follows that the number of all *n*-state programs is

$$|P_n| = (6(n+1))^{3n}.$$

Generic sets of programs

Definition 2 A set B of programs is called

- generic if $\mu(B) = 1$
- negligible if $\mu(B) = 0$
- strongly negligible if there are constants $0 < \sigma < 1$ and C > 0 such that for every n

$$\frac{|B \cap P_n|}{|P_n|} < C\sigma^n,$$

i.e. the sequence of the proportion of all n-state programs in B exponentially fast converges to 0

• strongly generic if $P \setminus B$ is strongly negligible

Generic-case decidability and complexity of HP

Question 4 Is there a generic set of Turing machines on which the HP is decidable?

Theorem 2 (Hamkins, Miasnikov) There is a generic set of Turing machines B such that HP is polynomial time decidable on B.

Question 5 What about strongly generic sets on which HP is decidable?

Theorem 3 (Main result) There is no strongly generic set of Turing machines on which HP is decidable.

How do we prove undecidability of classical HP?

Suppose HP is decidable, then

$$halt(x) = \begin{cases} 1, & \text{if } x = \delta(M) \text{ and } M(x) \downarrow, \\ 0, & \text{if } x = \delta(M) \text{ and } M(x) \uparrow. \end{cases}$$

is computable function on $\delta(P)$. Then the "diagonal" function

 $diag(x) = \begin{cases} \text{not def, if } x = \delta(M) \text{ and } M(x) \downarrow, \\ 0, & \text{if } x = \delta(M) \text{ and } M(x) \uparrow. \end{cases}$ is computable on $\delta(P)$ too. But the machine M computing diag makes an error on $\delta(M)$:

if
$$M(\delta(M)) \downarrow \Rightarrow diag(\delta(M)) = 0 \Rightarrow M(\delta(M)) \uparrow$$
.

if $M(\delta(M)) \uparrow \Rightarrow diag(\delta(M))$ is not defined $\Rightarrow M(\delta(M)) \downarrow$.

How to prove undecidability of HP on any strongly generic set?

Let S be a strongly generic set of programs. Suppose HP is decidable on S, then

$$halt(x) = \begin{cases} 1, & \text{if } x = \delta(M) \text{ and } M(x) \downarrow, \\ 0, & \text{if } x = \delta(M) \text{ and } M(x) \uparrow. \end{cases}$$

is computable function on $\delta(S)$. Hence the function

$$diag(x) = \begin{cases} \text{not def, if } x = \delta(M) \text{ and } M(x) \downarrow, \\ 0, & \text{if } x = \delta(M) \text{ and } M(x) \uparrow. \end{cases}$$

is computable on $\delta(S)$ and computed by some machine M . To get a contradiction we must give M the input $\delta(M)$.

Question 6 Should $\delta(M)$ belong to $\delta(S)$? Should *M* be in *S*?

Lemma 1 For any computable function f the set C(f) of all machines computing f is not strongly negligible.

Idea of proof. M has k states and computes f. M^* has n > k states and program with the same transition rules as in M for first k states and arbitrary rules for n - k other states:

fixed 3k rules
$$\begin{cases} (q_1, 0) \to \dots, \\ \dots \\ (q_k, \Box) \to \dots, \end{cases}$$

arbitrary $\Im(n-k)$ rules $\begin{cases} (q_{k+1},0) \to \dots, \\ \dots \\ (q_n,\Box) \to \dots \end{cases}$

 M^* computes f. A is the set of all such M^* .

$$\frac{|C(f) \cap P_n|}{|P_n|} \ge \frac{|A \cap P_n|}{|P_n|} =$$
$$= \frac{(6(n+1))^{3(n-k)}}{(6(n+1))^{3n}} = \frac{1}{(6(n+1))^{3k}}.$$
So $C(f)$ is not strongly negligible.

Returning to HP.

- C(diag) is not strongly negligible
- $P \setminus S$ is strongly negligible.

 \Rightarrow there is a machine M computing diag such that $M \in S$. That is all that we need to end proof of main theorem.

The end. Thank you.