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Public Key Encryption

A triple of polynomial time algorithms:

Key generation: probabilistic; given a “key 
length”, outputs secret & public key (pk, sk)

Encryption: probabilistic; given pk and 
message m, ouputs an encryption of m

Decryption: deterministic; given sk and a 
ciphertext, outputs decryption or an error



Secrecy Requirement
Ciphertext should leak length information 

only—if a computational assumption holds:

Example: ElGamal in prime order group 〈g〉

Secret: random a∈{1, ..., ord(g)}
Public: ga

Encrypting  m∈〈g〉: (gk, gak·m) w/ random k.

“If (ga, gk, gak) ≈ (ga, gk, grand.), ciphertext
tells nothing about plaintext” (DDH)



Malleability

Hiding the plaintext may not be enough:

(gk, gak·m)                       (gk, gak·m·m’) 

Adversary can modify message to obtain a 
“meaningfully related plaintext” (→ auction)

Theory on provable security:
If adversary can access a decryption oracle,
non-malleability ⇔ indistinguishable encrypt.



Chosen Ciphertext Attacks

Indistinguishable encryptions under adaptive 
chosen ciphertext attacks (IND-CCA):

1. attacker gets public key & access to 
decryption oracle

2. … fixes equal-length messages m0, m1
3. … gets an encryption of one mi (random)
4. … and tries to recocer mi

Goal: public key encryption scheme s.t. under 
a plausible assumption no ppt algorithm 
wins this game w/ non-negligible prob.



The Cramer & Shoup Construction

Fact:
A construction of Cramer & Shoup achieves 
this goal (efficiently) under assumptions
building on finite abelian groups.

Hope:
Adapting/generalizing this construction 
enables use of new hardness assumptions 
building on finite non-abelian groups.



Projective Hash Families
X, Π, S, K: finite non-empty sets
α: K → S (“projection of keys”)
H: K-indexed family of maps Hk: X → Π

For L ⊆ X we call (H, K, X, L, Π, S, α) a  
projective hash family (PHF) for (X,L) iff
for all k∈K the restriction H|L is uniquely 
determined by α(k).
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Smooth & Universal PHFs
A projective hash family is …

ε-universal: for all x ∈ X-L and uniformly at 
random chosen k ∈ K, the probability of 
guessing Hk(x) from x and α(k) is ≤ε
“Outside L, α(k) helps us almost nothing.”

ε-universal2: … even if we know some Hk(x0)  
value with x0 ∈X-L

ε-smooth: … the prob. distrib. (x, α(k), π) 
and (x, α(k), Hk(x)) are ε-close (uniformly at 
random chosen x ∈ X-L, k ∈ K, π ∈ Π, resp.)
“Hk looks on X-L like on the whole of X”



Subset Membership Problems (I)

Security proofs often use decision problems 
parameterized with a security parameter l.

Cramer/Shoup framework tries to capture 
these in a subset membership problem
specifying for each l an instance distribution.

(… + “some algorithms to get it effective”)



Subset Membership Problems (II)
Next to sets L ⊆ X, an instance specifies a 

relation on L × W—for each x∈ L we have 
a witness w∈W proving x∈L.

In a hard membership problem, we have
(instance descr., x) ≈ (instance descr., x’)

for x ∈ L and x’ ∈ X-L uniformly at random.

Associate to each instance of a membership 
problem a PHF → a hash proof system (HPS).



Hash Proof Systems

… also provide “a couple of algorithms”, like

- choosing keys k∈K uniformly at random 
- a private evaluation algorithm enabling for 

given k, x∈X the computation of Hk(x)
- a public evaluation algorithm enabling for 

given α(k), x∈L and a witness w for x the 
computation of Hk(x)

Cramer-Shoup uses strongly smooth HPS
witness vital for public Hk(x) computation



Cramer/Shoup Public Key Encrypt.
… uses hard subset membership problem M  

w/ 2 hash proof systems (strongly smooth/ 
strongly universal2 ext.)

Basic construction (w/ Π a group):

Secret: k∈K
Public: α(k) + instance descript.
Encrypt m∈Π:

 1. sample random x∈ L  + witness for x
 2. compute Hk(x) w/ public evaluation alg.
 3. send (x, m·Hk(x)) + “proof of integrity”
Decrypt: check integrity & recover m



Group Structure Helps

-generic constructions known, e.g., to upgrade
a universal HPS into a universal2 or strongly 
smooth one.

-Cramer/Shoup: L ≤ X, Π finite abelian groups,
H ≤ Hom(X, Π)      such group systems enable 
more efficient universal2 construction

Task: Build hard subset membership 
problem & universal HPS on finite groups



Automorphism Group Systems

An automorphism group system (X,H, α, S) is 
comprised of:

X, S finite (not necessarily abelian) groups,
H ≤ Aut(X), α: H → S a group homomorphism

For x∈X consider its orbit [x] under the 
action of ker α, and set L:={x ∈X: [x] = {x} }

L ≤ X and for φ∈H the value α(φ) fixes φ|L.



Autom. Group Proj. Hash Families
… together with a bijection ħ: K → H, we get 

a(n automorphism group) proj. hash family

An automorphism group system is p-diverse, 
if |[x]| ≥ p holds for all x∈ X-L.

Useful properties:
- Aut. grp. syst. (X, H, α, S) is p-diverse for 
the smallest prime  p diving |ker α|

- p-diversity of  the aut. group system yields
1/p-universality of the proj. hash family.



… Collecting Ingredients

• if X-L is a single orbit under the action of 
ker α, we get |L|/|X|-smoothness

• p-diversity yields dedicated construction 
guaranteeing 1/p-universality2

… we can get the projective hash families 
needed in the Cramer-Shoup construction

… together with a hard subset membership 
problem this would yield IND-CCA



Getting Examples …

… that yield something of practical value is 
unfortunately not that trivial

Less restrictive setting is possible:
in a group action system, H is required to 
(left-)act on a set X (González Vasco/Villar)

… but so far all practically convincing 
examples are abelian



Thinking Along the Lines of MST1

• [A1,…,As] a logarithmic signature for L ≤ X
• H≤Aut(X) s.t. L is fixed by each φ∈H
• α: φ→ φ|L     (publish image on log. sig.)
• witness set W:={0…|A1|-1} × … × {0…|As|-1}
• sampling (x, w)∈ L×W: “choose random w & 

take it for pointer into the log. sig.”

…in this way we can find aut. group system

… but getting the “complete thing”, incl. hard 
subset membership problem, not obvious



Concluding Remarks

• relevant parts of the Cramer/Shoup
framework can be made “non-abelian”

• framework yields no practical example for a 
non-abelian encryption scheme so far

• w/o random oracle, Cramer/Shoup seems a 
natural tool for “non-abelian + IND-CCA”

… more insight needed, more work to be done


	Towards�Provably Secure Asymmetric Encryption�Building on Finite Non-Abelian Groups 
	Public Key Encryption
	Secrecy Requirement
	Malleability
	Chosen Ciphertext Attacks
	The Cramer & Shoup Construction
	Projective Hash Families
	Smooth & Universal PHFs
	Subset Membership Problems (I)
	Subset Membership Problems (II)
	Hash Proof Systems
	Cramer/Shoup Public Key Encrypt.
	Group Structure Helps
	Automorphism Group Systems
	Autom. Group Proj. Hash Families
	… Collecting Ingredients
	Getting Examples …
	Thinking Along the Lines of MST1
	Concluding Remarks

