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Public Key Encryption

A triple of polynomial time algorithms:

Key generation: probabilistic; given a “"key
length”, outputs secret & public key (pk, sk)

Encryption: probabilistic; given pk and
message m, ouputs an encryption of m

Decryption: deterministic; given sk and a
ciphertext, outputs decryption or an error




Secrecy Requirement

Ciphertext should leak length information
only—if a computational assumption holds:

Example: ElGamal in prime order group (g)

Secret: random a<{l, ..., ord(g)}
Public: g¢
Encrypting me(g): (gk, g®%-m) w/ random k.

“If (ga' gk' gak) X (ga' gk' gr'and.)' Ciphervrex'r
tells nothing about plaintext” (DDH)



Malleability

Hiding the plaintext may not be enough:

(gk' gak.m) 4* (gk' gak.m.m')

Adversary can modify message to obtain a
"meaningfully related plaintext” (— auction)

Theory on provable security:
If adversary can access a decryption oracle,
non-malleability < indistinguishable encrypt.



Chosen Ciphertext Attacks

Indistinguishable encryptions under adaptiv
chosen ciphertext attacks (IND-CCA):

1. attacker gets public key & access to
decryption oracle

2. .. fixes equal-length messages m,, m;
3. .. gets an encryption of one m; (random)
4. .. and tries to recocer m, —

Goal: public key encryption scheme s.t. under |
a plausible assumption no ppt algorithm
wins this game w/ non-negligible prob.



The Cramer & Shoup Construc

Fact:

A construction of Cramer & Shoup achieves
this goal (efficiently) under assumptions:

building on finite abelian groups.

Hope:
Adapting/generalizing this construction

enables use of new hardness assumptions
building on finite non-abelian groups. . *. x
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Projective Hash Families

X,II, S, K: finite non-empty sets
a: K— S ("projection of keys")
H: K-indexed family of maps H,: X — TI
ForLcXwecall(H, K, X, L,II, S, a) a
projective hash family (PHF) for (X,L) iff
for all keK the restriction H|, is uniquely
determined by a(k). Y o

H




Smooth & Universal PHFs

A projective hash family is .

# c-universal: for all x € X- L and uniformly at
random chosen k € K, the probability of
guessing H,(x) from x and a(Kk) is <&

"Outside L, a(k) helps us almost nothing."

# c-universal,: .. even if we know some H,(x;)
value with x5 € X-L

¢ c-smooth: .. the prob. distrib. (x, a(k), ©)
and (x, a(k), H.(x)) are e-close (uniformly at
random chosen x € X-L, k € K, © € T1, resp.)
"H, looks on X-L like on the whole of X"



Subset Membership Problems

Security proofs often use decision problems |
parameterized with a security parameter |.

Cramer/Shoup framework tries to capture
these in a subset membership problem
specifying for each |'an instance distribution.

(... + "some algorithms to-get it effective”)



Subset Membership Problems

Next to sets L < X, an instance specifies a
relation on L x W—for each xe L we have
a withess weW proving xeL.

In a hard membership problem, we have
(instance descr., x) # (instance descr., X)

for x € L and x' € X-L uniformly at random.
A

Associate to each instance of a membership
problem a PHF — a hash proof system (HPS).



Hash Proof Systems

.. also provide "a couple of algorithms”, like

- choosing keys keK uniformly at random

- a private evaluation algorithm enabling for
given k, xeX the computation of H,(x)

- a public evaluation algorithm enabling for
given a(k), xeL and a withess w for x the

computation of H,(x) y

Cramer-Shoup uses strongly smooth HPS
witness vital for public H,(x) computation



Cramer/Shoup Public Key Encr

.. uses hard subset membership problem M
w/ 2 hash proof systems (strongly smooth/
strongly universal, ext.)

Basic construction (w/ IT a group):

Secret: keK

Public: a(k) + instance descript.

Encrypt mell:
1. sample random xe€ L + withess for x
2. compute H,(x) w/ public evaluation alg.
3. send (x, m-H(x)) + "proof of integrity”

Decrypt: check integrity & recover m r
B 000 e




Group Structure Helps

-generic constructions known, e.g., to upgrade
a universal HPS into a universal, or strongly
smooth one.

-Cramer/Shoup: L < X, IT finite abelian groups,
H < Hom(X, IT)== such group systems enable ¥
more efficient universal, construction

Task: Build hard subset membership
problem & universal HPS on finite groups



Automorphism Group Systems

An automorphism group system (X,H, o, S) i
comprised of:

X, S finite (not necessarily abelian) groups,
H < Aut(X), a: H > S a group homomorphism

For xeX consider its orbit [x] under the
action of ker a, and set L:={x € X: [x] = {x} }

L < X and for ¢cH the value a(d) fixes ¢],.



Autom. Group Proj. Hash Fami

.. together with a bijection h: K > H, we get
a(n automorphism group) proj. hash family

An automorphism group system is p-diverse,
if |[x]| > p holds for all xe X-L.

Useful properties:
- Aut. grp. syst. (X, H, a, S) is p-diverse for
the smallest prime p diving |ker qf

- p-diversity of the aut. group system yields
1/p-universality of the proj. hash family.




.. Collecting Ingredients

+ if X-L is a single orbit under the action of
ker o, we get |L|/|X|-smoothness

- p-diversity yields dedicated construction
guaranteeing 1/p-universality,

.. we can get the projective hash families
needed in the Cramer-Shoup construction

.. fogether with a hard subset membership Q)
problem this would yield IND-CCA .



Getting Examples ...

.. that yield something of practical value is
unfortunately not that trivial

Less restrictive setting is possible:
in a group action system, H is required to

(left-)act on a set X (Gonzalez Vasco/Villar)
A

.. but so far all practically convincing
examples are abelian




Thinking Along the Lines of M

* [Aq,....,A.] a logarithmic signature for L < X

+ H<Aut(X) s.t. L is fixed by each ¢cH

- a: ¢—> ¢|_ (publish image on log. sig.)

+ withess set W:={0...|A,|-1} x .. x {0..|A|-1}

» sampling (x, w)e LxW: "choose random w &
take it for pointer into the log. sig."

..in this way we can find aut. group system

.. but getting the "complete thing", incl. hard
subset membership problem, not obvious



Concluding Remarks

* relevant parts of the Cramer/Shoup
framework can be made "non-abelian®

+ framework yields no practical example for a
non-abelian encryption scheme so far

» w/o random oracle, Cramer/Shoup seems a
natural tool for "non-abelian + IND-CC% |

.. more insight needed, more work to be done
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