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Abstract. If g is a class of sets and A is not in S then an infinite set H is a proper hard core for A with 
respect to g, if H C A and for every C E Q such that C c A, C G H is finite. It is shown that if E? is a 
countable class of sets of strings that is closed under finite union and finite variation, then every infinite 
set not in Q has a proper hard core with respect to R In addition, the density of such generalized 
complexity cores is studied. 

Categories and Subject Descriptors: F. 1.3 [Computation by Abstract Devices]: Complexity Classes- 
machine-independent complexity 

General Terms: Theory, Verification 

Additional Key Words and Phrases: Generalized complexity cores, proper hard cores 

1. Introduction 

Consider a recursive set A that is not in the class P of sets recognizable determi- 
nistically in polynomial time. For every algorithm (Y that recognizes A and for every 
polynomial p, there exist infinitely many inputs x such that as running time on x 
exceeds p( ] x ] ); this follows from the fact that A is not in the class P. Lynch [ 121 
showed that this condition implies that there exists an infinite set X such that for 
every algorithm (Y that recognizes A and every polynomial p, (Y’S running time 
on x exceeds p( ] x ] ) on all but finitely many x E X. The set X is a complexity 
core for X. Thus, a complexity core is a set of “hard” instances of candidates for 
membership in A. Lynch’s proof shows that for every recursive set A not in P there 
exists X C A such that X is a complexity core for A; we call such a complexity core 
proper. Thus, a proper complexity core X of a set A is a subset of A that is 
intrinsically difficult to recognize, and every recursive set not in P has an infinite 
proper complexity core. 

If A is not in P, then it is still possible for A to have an infinite subset B such 
that B is in P, that is, an infinite subset that is intrinsically easy; such a set B may 
be called a P-approximation of A. If a set not in P has no P-approximation, then 
this set is P-immune. It is clear that a set A is P-immune if and only if A is a proper 
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complexity core for A. If a set is P-immune and its complement is also P-immune, 
then the set is bi-immune for P. Balcazar and Schoning [I] showed that a set A is 
b&immune for P if and only if Z* is a complexity core for A. 

Immunity in computational complexity theory has been studied recently in the 
context of relativized complexity classes (see, for example, [9] or [22]). The use of 
that notion in the context of the present paper stems to earlier work of Berman [3] 
and of Ko and Moore [lo] but it appears that Balc&zar and Schoning [l] were the 
first to link the notion of immunity with that of complexity core. This latter work 
has led to a comprehensive study by Balc&zar, Du, Isakowitz, Orponen, Russo, 
and Schoning [ 1, 5, 6, 14-191 of P-immune sets, complexity cores, the lattice of 
complexity cores of a set, sparse complexity cores, and other topics. 

The purpose of the present paper is to extend some of the principal results of 
[ 1, 5, 6, 14-191 to a more general setting. Even et al. [7] have considered the 
existence of generalized complexity cores with respect to classes such as R, ZPP 
(= R n co-R), NP, and NP rl co-NP. These generalized complexity cores are called 
hard cores with respect to the appropriate class. We follow this terminology but we 
define the basic notions in a machine-independent, measure-independent manner 
that allows us to capture the fundamental ideas in the previous studies as well as 
to present conceptually simple proofs (using only elementary methods). 

The results are presented in three sections. The topic of the Section 2 is the 
existence of infinite proper hard cores. The basic result (Theorem 2.7) gives 
conditions under which a set not in a class B must possess an infinite proper hard 
core with respect to g Conditions on the very general classes ‘8 are given and 
shown to be necessary. In addition, the situation in which g is a recursively 
enumerable class of recursive sets is considered and the existence of an infinite 
recursive proper hard core is established for recursive sets not in 8 (Theorem 2.10). 
This generalizes the results of Lynch [ 121 and of Even et al. [7]. 

In Section 3 the density of proper hard cores is studied. Motivated by results of 
Orponen and Schijning [ 161 characterizing those sets not in P having nonsparse 
proper complexity cores, we establish a density theorem (Theorem 3.3) for the 
proper hard cores with respect to a recursively enumerable class of recursive sets. 

Section 4 contains some remarks on related topics. An existence theorem for 
“partially immune” hard cores is established and the complexity of hard cores is 
discussed. 

We assume that the reader is familiar with the properties of complexity classes 
such as P, NP, PSPACE, and the union PH of the classes in the polynomial time 
hierarchy. Unless explicitly noted to the contrary, all strings are taken over the 
alphabet Z = {O, 1). The set of all such strings is denoted by 2*. For a set A the 
complement of A is denoted 2. For a class ‘G? of sets, co-8 denotes the class 
(c ] C E ‘5). For a string x, the length of x is denoted by ] x 1. The cardinality 
of a set S is denoted by I] S I]. The set of natural numbers is denoted by 2 For 
a machine it& the set of strings accepted by M is denoted by L(M). 

2. The Existence of Hard Cores 

We begin by recalling Lynch’s [ 121 definition of “complexity core.” 
A set H is a complexity core for a recursive set A if, for every polynomial p and 

every deterministic Turing machine M recognizing A, M’s running time on x 
exceeds p( ] x ] ) for all but finitely many x E H. A complexity core H for A is 
proper if H C A. 
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Du et al. [6] have shown that an infinite subset His an infinite proper complexity 
core for A if and only if for every set D G A, D E P implies D rl H is finite. The 
following lemma improves this slightly. 

LEMMA 2.1. An infinite set H is a complexity core for a recursive set A if and 
on[v tffor every set D E P with D C A or D G 2, D fl H isfinite. 

PROOF. Let H be a complexity core of A. If D G A and D E P, construct a 
procedure that behaves as follows: 

input x; 
if x E D then accept 

else if x E A then accept else reject. 

This procedure recognizes A. Since D E P, there exists a polynomial p such that 
this procedure accepts every x E D in time p( ] x ] ). Since H is a complexity core 
of A, this means that H 6 D is finite. A similar proof can be used in case D C 2. 

For the converse, suppose that His not a complexity core of A. Thus, there is a 
machine M that recognizes A and a polynomial p such that M’s running time on 
x is less than p( ] x ] ) for infinitely many x E H. Define D = (x ] M accepts x in 
time p(lxl)J and E = (x]M rejects x in time p(lxl)J. Then, D E P, E E P, 
D G A, and E C 2. Clearly, either D tl H or E rl H is infinite. Cl 

This result provides motivation for our general definition. 

Definition 2.2. Let 93 be a class of sets. For any set A, let 5% denote (C E 
59 I C C A). A set H is a hard core for A with respect to e if for every C E E”, 
C n H is finite. If, in addition, H is a subset of A, then H is a proper hard core. 

Before developing any properties of hard cores, we interpret this definition of 
some well-known complexity classes. 

PROPOSITION 2.3. Let n > 0, let A be an infinite set, and let H C A. The set H 
is an infinite proper hard core for A with respect to Z f: tf and only tf for every 
polynomial q and every nondeterministic oracle machine M that recognizes A 
relative to a set in Zf-, , say, B E % and L(M, B) = A, the length of the shortest 
accepting computation on M relative to B on x is less than or equal to q( I x I ) for 
onlyfinitely many x E H. 

PROOF. Suppose there exist a polynomial p, a nondeterministic oracle machine 
M, and a set B E ZE-, such that L(M, B) = A, and for infinitely many x E H, 
there is an accepting computation of M on x relative to B of length at most q( I x I ). 
Let C be the set of all such x. Clearly, C G H G A, C E ZE, and C is infinite. Thus, 
C n His infinite so that H is not a proper hard core for A relative to 2:. 

Now suppose that H is not an infinite proper hard core for A relative to 2:. 
Then for some C E ZI, C C A, and C n H is infinite. Let hiI, be a nondeterministic 
polynomial time-bounded oracle machine and BI a set in ZE-:_, such that 
L(M,, B,) = C; let p be a polynomial that bounds Ml’s running time. Let MZ 
be a nondeterministic oracle machine that recognizes A relative to some set 
B2 E Zz-:_, . Construct M3 such that on input x, M3 simulates a computation of MI 
on x relative to B, for p( ] x ] ) steps. If this computation is accepting, then MS halts 
and accepts; otherwise, M3 simulates a computation of M2 on x relative to Bz. 
Since L(MI, B,) = C, C G A, and L(M2, B2) = A, we see that L(M3, BI @ Bz) = A; 
also, B, @ Bz E Zr-,. Since C n H is infinite, there are infinitely many x E H 
such that the length of the shortest accepting computation of M3 on x relative to 
B,@Bzisatmostp(]x]). 0 
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Similar arguments yield the somewhat weaker facts regarding other classes. 
The class R (random polynomial time) is the class of sets L such that for 

some nondeterministic polynomial time-bounded machine M, L(M) = L and 
for all x E L(M). 

pr(there is an accepting computation of M on x with at most 
q( 1 x I) steps) 2 4. 

The class ZPP is R fl co-R. 

PROPOSITION 2.4. Let A and H be infinite sets. Suppose thatfor every polynomial 
q and every nondeterministic Turing machine A4 recognizing A, 

pr(there is an accepting computation of M on x with at most 
dl xl) steps) 25 i 

for only finitely many x E H. Then H is an infinite hard core for A with respect 
to R. 

Let M be a nondeterministic oracle machine that is endowed with designated 
accepted states and with designated rejecting states. We say that M is strong if, 
relative to each oracle set, for each input string x, there is either at least one 
accepting computation of M on x or at least one rejecting computation of M on x, 
but not both accepting and rejecting computations on x. 

PROPOSITION 2.5. Let A be an infinite set and let H be an injnite subset of A. 
Suppose that for every polynomial q and every strong nondeterministic Turing 
machine A4 recognizing A, the minimum running time of A4 to decide whether x is 
in A is bounded above by q( I x I ) for only finitely many x E H. Then H is a proper 
hard core for A with respect to NP rl co-NP. 

PROPOSITION 2.6. Let A be an infinite set and let H be an infinite subset ofA. 
Suppose that for every strong nondeterministic Turing machine M recognizing A, 

pr(there is an accepting computation of N on x with at most 
4( I x I ) step.4 2 i 

for only finitely many x E H. Then H is a proper hard core for A with respect 
to ZPP. 

Now we establish a general existence theorem. 

THEOREM 2.7. Let %? be a countable class of sets. An infinite set A has an infinite 
proper hard core with respect to @ tf and only if A is not a finite union of a finite 
set and some sets in sz 

PROOF. Let A be an infinite set that is not a finite union of a finite set and 
some sets in ‘8’. Let eA denote (C E %Y I C C A]. Let B be the union of all sets in ‘$$. 
If A - B is infinite, then A - B is an infinite proper hard core of A with respect to 
E’, so assume A - B is infinite. Since ‘69 is countable, %$ is countable so that 5& can 
be enumerated as C, , Cz, . . . . Let Dk = U (Ci I 1 I i z~ k). Then, (i) for every k, 
Dk G Dk+,, and (ii) for every C E E& there exists k such that C C Dk. 

We claim that for infinitely many k, Dk # Dk+, . For otherwise, there exists j 
such that for every k L i, Dk = Dj SO that A = (A - B) U B = (A - B) U Dj, 
contradicting the hypothesis that A is not the finite union of some finite set and 
some sets in E 
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For each k such that Dk # Dk+l, choose ak E Dk+, - Dk and let H be the set of 
all such chosen aks, that is, H = (ak ] Dk # Dk+l]. Then H is infinite and for every 
k, H fl Dk is finite. By (ii), this means that for every C E 5& H tl C is finite. Thus, 
H is an infinite proper hard core for A with respect to ‘Z 

To see the converse, suppose that A = FU C1 U . . . U Ck where F is a finite set 
andCiE%?fori=l,..., k. Let H be an infinite subset of A. Since H = H FU A = 
(H n F) u (H n C,) U . . . U (H fl Ck), there is at least one infinite set among 
Hfl Cl, . . . , H fl Ck. Hence, H cannot be a proper hard core for A. 0 

We say that there is a hard-core theorem for g if every infinite set A that does 
not belong to %Y has a proper infinite hard core with respect to Z 

THEOREM 2.8. Let E: be a countable class of sets. There is a hard-core theorem 
for Ep if% satisfies the following conditions: 

(a) ifC, and C’, are infinite sets in E’, then so is C, U C2; 
(b) ifC is an infinite set in GY and F is a finite set, then C U F E E. 

PROOF. By Theorem 2.7, there is a hard-core theorem for 8 if every set that is 
not in % is not a union of a finite set and some sets in %; this is equivalent to the 
hypothesis that both (a) and (b) hold. 0 

COROLLARY 2.9. Let 8 be a countable class of sets that is closed under finite 
union and finite variation. Let A be an infinite set. Suppose that for every infinite 
set H C A, there exists C E G% such that H n C is infinite. Then A E %. 

Note that Theorem 2.7 is very general. Nothing is said about either A or H being 
recursive or about ‘8 being a complexity class. Nothing is said about H being 
obtained effectively for A or of 8 being effectively closed under union or under 
finite variation. 

As applications of Theorem 2.7, consider the following examples: 

(i) Every nonarithmetic set A has a hard core with respect to the class of arithmetic 
sets. 

(ii) Let PH be the union of the polynomial-time hierarchy, PH = Unz,-, ZE. 
Suppose that PSPACE # PH. Every A in PSPACE - PH has a hard core with 
respect to PH. 

(iii) Every set A that is not regular has a hard core with respect to the class of 
regular sets. 

Even et al. [7] have established two theorems asserting the existence of complexity 
cores for complexity classes specified by recursive predicates. They require that 
each class be closed under finite variation and that each class satisfy the parallel 
computation property. Since the parallel computation property implies closure 
under union, Theorem 2.7 applies to these classes. Furthermore, one can extend 
the arguments of Du et al. [6] to show that these classes are such that the proper 
hard cores described in [7] satisfy Definition 2.2. 

Schoning [20] has considered a decomposition of the class NP: for every n z 0, 
define LE = (A E NP ] Z:(A) G 2:) and HS: = {A E NP ] 2E-i G Z;(A)], and define 
LH = Un,O Lz and HH = UnaO H,. It turns out that HOP = (A ] A is &-complete 
for NP}, L$ = P, and LT = NP fl co-NP. Note that each Ly and HP is closed 
under finite variation as are LH and HH. Although Lop and Lp are closed under 
union, it is not known whether any LT, i I 2, or any Hi’ is closed under union. 
Thus, it is not known whether Theorem 2.6 can be applied to the classes Lp, 
i L 2, or the classes HF. However, Theorem 2.7 can be applied to the classes 
LH and HH. Further, if the polynomial-time hierarchy is infinite, then there exists 
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A E NP such that A has a hard core with respect to LH and A has a hard core with 
respect to HH. Similar facts hold for the decomposition of PH described by 
Balcazar et al. [2]. 

The proof of Theorem 2.7 essentially requires that the class G? be countable, be 
closed under finite union, and be closed under finite variation, that is, if 8 is 
countable and 9 is the closure of ‘Z? under finite union and under finite variation, 
then an infinite set A not in 9 has an infinite proper hard core with respect to 9 
if and only if it has an infinite proper hard core with respect to %? In Corollary 2.8 
these requirements are explicitly stated. Each of these conditions is necessary as 
seen by the following arguments. 

(i) The hypothesis of countability of the class under consideration is necessary. 
To see this, recall that a set is “sparse” if there is a polynomial p that for all n 
bounds the number of strings in the set having length at most n. It is clear that the 
collection of all sparse sets is uncountable but is closed under both union and finite 
variation. Note that every infinite subset of a proper hard core is a proper hard 
core itself, and every infinite set has an infinite sparse subset; thus, if a set has a 
proper hard core, then it has an infinite proper hard core that is sparse. Thus, if B 
is a class that contains every sparse set, then no set A not in @? can have a proper 
hard core with respect to $9’. Examples of such classes are the class of sets with 
polynomial size circuits [4, 1 I] and the class of sets with small generators [2 1, 231. 

(ii) C. Wrathall (personal communication) has observed that closure under 
union is necessary. For, let $9 be the class of deterministic context-free languages 
so that Z? is closed under finite variation but not under finite union. Let 
A = (a”b” 1 n 2 1) U (a”b’” 1 n 1 l), so that A is not in K For any infinite H c A, 
either H rl (a”b” 1 n L 1) is infinite or H n {a”b2” 1 n 2 1) is infinite. Since both 
(a”b” 1 n z 1) and (anbzn I n L 1) are in %, H is not a proper hard core of A. 

(iii) Let 8 be the class of all subsets of (OO)* such that C E B implies that 
(oo)* - C is finite. It is clear that S is countable and is closed under union, but B 
is not closed under finite variation. Let A = (0, 1) U (OOj* so that A is not in g 
Note that for every infinite subset B of A and every set C E q B rl C is infinite. 
Hence, A has no proper hard core with respect to 55’. 

Up to this point we have only considered the existence of proper cores. In general 
the cores need not be recursive sets. Now we turn to the problem of showing the 
existence of infinite proper hard cores that are recursive sets. 

THEOREM 2.10. Let %? be a recursively enumerable class of recursive sets that is 
closed under finite union andjinite variation. Any infinite recursive set not in %? has 
an infinite recursive proper hard core with respect to g. 

PRooF. Let al, a2, . . . be some recursive enumeration of Z*, say an enumeration 
in lexicographic order. Let CO, C,, . . . be an effective enumeration of K Let A be 
an infinite recursive set not in 5Z 

We construct a set H in stages. 

Stage 0. m := 0. 

Stage n + 1 

for uncanceled i 5 m do 
if a, E 2 and a, E C’i then cancel i 

else 
if a,, E A and for all uncanceled i s m, a,, E Ci 

then H := H U (a,) and m := m + 1 
elsem:=m+ 1. 

end. 
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It is clear that H is recursive and H G A. Let us show that H is infinite. If H 
is finite, there exist m. and no such that n 2 no and a, E A imply a,, E Ci for some 
uncanceled i 5 mo. Now if any i I m. with Ci E 59,,, the index i will eventually 
be canceled so, without loss of generality, we can assume that no is such that in 
step n L no, for any uncanceled i 5 m 0, Ci E eA. Let U = (Ci ] i I m. and i is un- 
canceled). Then, U C A and ]I A - U I] 5 no. Since Z? is closed under finite union 
and under finite variation, A E g, contradicting the hypothesis. 

Since H is infinite, m goes to infinity as n goes to infinity. Hence, for any 
Ci E %A, Ci n H is finite. 

Thus, H is an infinite proper hard core for A with respect to 59 and H is a 
recursive set. •i 

3. Density of Hard Cores 

Here we consider the density of hard cores. In Section 2 we noted that if set A has 
a proper hard core H with respect to a class 59, then every infinite sparse subset of 
H is also a proper hard core for A. Under what conditions do there exist proper 
hard cores that are not sparse? To study questions such as this, it is appropriate to 
review some definitions. 

For any set A, the census ofA is defined as censusA = I] (x E A ] ] x ] I n) II. 
A set A is sparse if for some polynomial p, censusA 5 p(n) for all n. 

For a deterministic Turing machine M and a functionfon the natural numbers, 
the set off-hard inputs for M is defined to be H(M,f) = (x E Z* ] the running time 
ofMonxisgreaterthanf(]x])). 

Observe that a set C is a hard core for a set A with respect to P (i.e., a complexity 
core for A in Lynch’s terms) if and only if for every machine M recognizing A and 
every polynomial p, C - H(M, p) is finite. Do there exist sets not in P that have 
nonsparse hard cores with respect to P? This question was answered in the 
affirmative by Balcazar and Schoning [I]. Later, Orponen and Schoning [16] 
characterized the class of all such sets. In order to explain that characterization, 
the definitions of certain classes must be reviewed. 

The class APT (almost polynomial time recognizable sets) is (L(M) 1 M halts on 
all inputs and for some polynomial p, H(M, p) is sparse}. The class WAPT (weakly 
almost polynomial time recognizable sets) is (L(M) ] M halts on all inputs and for 
some polynomial p and infinitely many IZ, ]I H(M, p&,, I] 5 p(n)). The class l-APT 
is (L(M) ] M halts on all inputs and for some polynomial p, H(M, p) n L(M) is 
sparse). The class I-WAPT is (L(M) ] M halts on all inputs and for some polynomial 
p and infinitely many n, ]I (H(M, p) n L(M))5n ]I 5 p(n)}. 

The classes APT and WAPT were introduced by Meyer and Paterson [ 131. The 
classes l-APT and I-WAPT are the asymmetric versions of these classes and were 
introduced by Orponen and Schoning [ 161 in order to study proper complexity 
cores. Orponen and Schoning developed the following characterization theorem: 
A recursive set has only sparse complexity cores if and only if it is in APT. We 
establish a general theorem about the density of hard cores that yield some of the 
known results about complexity cores as corollaries. 

Notation 3.1. Let E: be a class of sets and let A be an infinite set not in E?. For 
any set B, let I’?(B) = (H G B ] H is a proper hard core of A with respect to 591 
and let ‘T:(B) = (HE I’:(B) ] His recursive]. Let I’Y = I’?(A) and r? = r?(A). 
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THEOREM 3.2. Let ‘Z be a countable class that is closed under finite variation 
and under finite union. Let ( fk)kzO be a nondecreasing sequence offunctions on the 
natural numbers, that is, for all n and k, fk(n) 5 fk+,(n). Let A be an infinite set not 
in 557 and let B G A. The following are equivalent: 

(a) for every H E I’:(B), there exists k such that census,,(n) 5 fk(n) for all sufficiently 
large n; 

(b) either 
(i) S& = 0 and there exists k such that censusB(n) 5 fk(n) for all su$‘tciently 

large n; or 
(ii) there exist C E S& and k such that census&n) I fk(n) for all suficiently 

large n. 

PROOF. Clearly, each of (b-i) and (b-ii) implies (a). 
Suppose that (a) is true and @$ = 0. Then B is a hard core for A with respect to 

g and there exists k such that censusB(n) s&(n) for all suffkiently large n so that 
(a) implies (b-i). Suppose that GY,, # 0. Assume contrary to (b-ii) that such a C and 
k do not exist, that is, for all C E gA and all k, census+c(n) >fk(n) for infinitely 
many n. Consider any sequence of sets Di E E: such that (i) D1 c D2 c . . . , (ii) for 
every C E g there exists k such that C G Dk, and (iii) U (Dk 1 k > 0) = A. Then 
for any k and i, censusB-Dk(n) > J(n) for infinitely many n. Thus, for each 
k > 0 there exist nk with nl < n2 < . . . such that census&.Dk(nk) > fk(nk). 
Define H = ukkI(x E B - Dkl 1x1 I nk]. Then for every k, H rl Dk is finite. 
Hence, H is a hard core of A with respect to ‘Z and H G B G A. Further, for 
all k, census&k) 2 census&&&) > fk(n& Hence, for any I& k > ko implies 
census&&) > fk(nk) 2 fb(nk). Thus, (a) does not hold. This means that if (a) is true 
and g, # 0, then (b-ii) holds. Cl 

Consider the situation that the appropriate sets are recursive. 

THEOREM 3.3. Let % be a recursively enumerable class of recursive sets that is 
closed under finite variation and under finite union. Let ( fk),&-O be a nondecreasing 
sequence of recursive functions on the natural numbers, that is, for all n and k, 
fk(n) <h+,(n). Let A be an infinite recursive set not in ZS’ and B a recursive subset 
of A. The following are equivalent: 

(a) for every H E ‘YA(B), there exists k such that censusn(n) 5 fk(n) for all su$%iently 
large n; 

(b) either 
(i) %A = 0 and there exists k such that censuse(n) 5 fk(n) for all sufj‘iciently 

large n, or 
(ii) there exist C E eA and k such that censu+o(n) I fk(n) for all suficiently 

large n. 

PROOF. Clearly, each of (b-i) and (b-ii) implies (a). 
Suppose that (a) is true and % = 0. Then B is a hard core for A with respect to 

‘27 and there exists k such that censusB(n) I fk(n) for all sufficiently large n so 
that (a) implies (b-i). Suppose that (a) is true and that L% # 0. Assume contrary 
to (b-ii) that such a C and k do not exist, that is, for all C E @$ and all k, 
census&c(n) > fk(n) for infinitely many n. 
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Letc,,c&... be an enumeration of %? Consider the following construction of 
a set H. 
Stage 0. m := 0. 
Stagen + 1. 

for uncanceled i I m do 
if a,, E 2 and a, E Ci then cancel i; 

if a, E B and for all uncanceled i 5 m, a, E Z;i 
then H := H U (a,); 

ifcensus,(Ia,I)~fk(lanI) 
thenk:=k+ 1 andm:=m+- 1; 

end. 

It is clear that H is recursive and H C A. Let us show that m goes to infinity. If 
m does does not go to infinity, neither does k so that there exist n’, m’, and k’ 
such that n > n’, a, E B, and a,, E ci for all uncanceled i 5 m ’ imply a, E H, 
and n > n’ implies census& ] a,, I) < fJ I a,, I). Now for any i I m ’ with Ci 
not in & = (C E %Y ] C G A}, the index i will eventually be canceled so without 
loss of generality, we can assume that n ’ is such that for every n > ~1’) for any 
i 5 m ’ that is uncanceled at stage n, Ci E %A. Let U = U {Ci ] i 5 m ’ and i is 
uncanceled). Then U G A and censusB&n) <f&z) for all n > ] a,t I. Since g is 
closed under finite union, U E ‘%Z Thus, U E ‘& and for all sufficiently large n, 
censu+&) <j&r), contradicting the hypothesis that (b-ii) is false. 

Since m goes to infinity, H is infinite and n goes to infinity. Hence, for any 
Ci E %%, Ci O H is finite. Thus H E r:(B). By (a) and the choice of (fk)k=O 
as an increasing sequence, there exist k” and n” such that k > k” and 
n > n” imply censuscl(n) zz f(n). It follows that m cannot go to infinity, a 
contradiction. Cl 

As corollaries we obtain a number of results due to Orponen and 
Schoning [ 161. 

COROLLARY 3.4. A recursive set A is in l-APT ifand only iffor every H E r,‘, 
H E l-APT. 

PROOF. Let 5F = P, fk(n) = nk + k for all n and k, and B = A. Note that 0 E P 
so that gA # 0. Now apply Theorem 3.2. El 

Interpreting Corollary 3.4, we have the following fact. 

COROLLARY 3.5. A recursive set A has a nonsparseproper (recursive) complexity 
core if and only zfA is not in l-APT. 

Since APT = I-APT fl co- l-APT, Corollary 3.5 yields the following important 
result. 

COROLLARY 3.6. A recursive set A has a nonsparse (recursive) complexity core 
zfand only zfA is not in APT. 

Next we generalize a result of Du et al. [6], which becomes a useful lemma in 
the present development. 

COROLLARY 3.7. Let %F be a countable class that is closed under finite union 
and finite variation. Let A be an infinite set not in B and let B G A. The following 
are equivalent: 

(a) for all H E I’?, B fl H isfinite; 
(b) either 

(i) %$ = 0 and B is finite, or 
(ii) there exists C E gA such that B - C is3nite. 
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PROOF. That each of (b-i) and (b-ii) implies (a) is trivial. Suppose that (a) is 
true. For every k let fk(n) = k. For any H E I’?@), H is finite since H E B and 
H O B is finite. Thus, there exists k such that census&) s&(n) for all n. Using 
Theorem 3.2, note that ‘& being empty implies that there exist k such that 
censuse(n) I fk(n) = k for all sufficiently large n. Hence, B is finite. Also using 
Theorem 3.2, ‘& not empty implies that there exist C E %? and k such that 
census&n) 5 fk(n) = k for all sufficiently large n so that B - C is finite. El 

Let A and B be two sets. Define A = B if A - B and B - A are finite. Clearly, 
= is an equivalence relation on sets. We write A for the equivalence class of A. 
If Q is a class of sets, we write either fi or z:(Q) for (2 ] A E Q). We sometimes 
denote the equivalence class 2 by =(A). 

Orponen [ 14, 151 has shown that =(I’:) = =(I’:) if and only if A - B E P and 
B - A E P. We generalize this result to other classes in the following way. 

COROLLARY 3.8. Let B be as in Theorem 3.3. The class %? is closed under 
relative complement (i.e., if C,, CZ E g, then CI - CZ E 8) if and only tffor every 
two sets A, B, the following statements are equivalent: 

(a) =(rZ) = =(rX); 
(b) bothA-BandB-Aareing 

PROOF. First, suppose that %Z is closed under relative complement. For any 
sets A, B, if both A - B and B - A are in g, then it follows trivially that 
=(‘I?) = =(‘Ij$). Thus, suppose that for two sets A and B, =(ry) = =(rb). LA 
C E E Since G? is closed under relative complement, 0 = C - C is in G? so that 
for every set D, 0 E E”. Now =I(%‘~) = =(‘I’:) implies that (A - B) fl H is finite 
for every H E ‘Yy. By Corollary 3.7 this means that there exists Cr E ‘& such 
that (C, - (A - B)) tl H G C, tl H and Cr fl H is finite. Hence, for any H E ‘Y?, 
(C, - (A - B)) tl H is finite. Again applying Corollary 3.6, this means that 
there exists C, E E’,, such that Cr - (A - B) G CZ. But (A - B) O CZ = 0 so that 
A-B=C,- CZ E B since 8 is closed under relative complement. Similarly, 
B-AEK 

Second, suppose for every two sets A, B, =(‘I% = =z(rg if and only if both 
A - B and B - A are, in 59. We must show that E: is closed under relative comple- 
ment. Let C,, C2 E E Let C3 2 Cr be such that C, - C1 is finite. Then 
CS E B and =(‘I?,) = =(‘I?$, so that 0 = C, - Cj and Cj - Cr are in E Now 
Cr = Cr - 0 and 0 = 0 - Cr are in 8 so =(‘IF,) = =($%). Similarly, =(I’FJ = 
=(I$) so that =(I’F,) = z(I$J. Thus, C, - CZ and C, - Cr are in E Cl 

COROLLARY 3.9. NP = co-NP tfand only tffor every two sets A, B, the following 
conditions are equivalent: 

(a) =(Y,N’) = =(@“p); 
(b) both A - B and B - A are in NP. 

Using arguments similar to those of the proof of Corollary 3.8, we have the 
following fact. 

COROLLARY 3.10. For every two sets A, B, both A - B and B - A are in APT 
tfand only tf (H - S, S - H 1 H E ‘I’$, S is sparse) = (H - S, S - H 1 H E rg, 
S is sparse]. 

Theorem 3.2 can be altered in the following way with the result again being true: 
uniformly replace “for all sufficiently large n” with “for infinitely many n.” The 
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proof of the new result is essentially the same as the proof of Theorem 3.2; the 
details are left to the reader. This result yields the fact that a recursive set A is in 
1 -WApT if and only if every proper recursive complexity core of A is in 1 -WAPT. 

The applications of the principal theorems on the density of hard cores have 
focused on the notion of sparse sets, But it is clear that one can apply these theorems 
to situations in which density bounds other than polynomials are considered, for 
example, subexponential bounds. 

4. Additional Remarks 
Recall that a set is P-immune if it has no infinite subset in P. Similarly, for a 
collection %T of sets, we can define a set to be ~-immune if it has no infinite subset 
in $5~ From the results in Section 2 it is clear that if H is an infinite proper hard 
core with respect to 8 for some set A not in %, then His g-immune. 

There is a variation on this notion that has arisen in the study of complexity 
measures for public-key cryptosystems [8]. If S is %-immune, then the only subsets 
of S that can be in 9 are the finite subsets. What we consider here is the situation 
where the notion of “sparse subset” replaces that of “finite subset.” 

Definition 4.1. Let %? be a collection of sets. A set is partially @‘-immune if it 
has no nonsparse subset in ‘Z 

Of course, we want partially p-immune sets to be nonsparse just as we want 
g-immune sets to be infinite. We establish an existence theorem for partially 
‘Z-immune sets where the proof depends on the density theorem for infinite proper 
hard cores (Theorem 3.2). 

Notation 4.2. Let @Y1 and G?z be collections of sets. Let @Yi A %5 denote the 
collection (C, O Cz ] C1 E @, and CZ E ‘5Q and let 5% V @ denote the collection 
( C1 U Cz ] Cr E !Z, and C, E %%‘z]. 

THEOREM 4.3. Let %? be a collection of recursive sets such that 0 is in Se and let 
9 be the collection of all recursive sparse sets. Let ST denote the smallest class 
containing every set in ((%? A co-p) V 9) and is closed under finite union and 
finite variation. For any infinite recursive set A not in 9, there is an infinite subset 
H of A such that (i) H is nonsparse and (ii) H is partially g-immune. 

PROOF. For each integer k > 0, letfk(n) = nk + k. Recall that A is a subset of 
itself. Now 9A # 0 and there exist no B E 9?A such that for some k, censusA+ 
I f&t) for all but finitely many n. Thus, by applying Theorem 3.2 we see that 
there is an infinite subset H of A such that H is nonsparse and H is a proper 
hard core of A with respect to 9. Since E: A co-9 G 9, H is also a proper hard 
core of A with respect to %? A co-9 Thus, for every C E % and every ,!? E co-x 
(C rl 3) tl H is finite so that all but finitely many elements of C O H are in S. 
This means that for every C E %$ C O H is sparse. Cl 

In Theorem 4.3, one considers a nonsparse set A that is in a class 9 but not in 
a class E This class 9 is taken to be the class of sparse sets in 9. It is assumed 
that the smallest class containing all the sets in ((5Z A CO-~) V 9) and closed 
under finite union and under finite variation is properly included in 9 When 
dealing with complexity classes it appears to be more convenient to assume that 
the Boolean closure of $57 U 9 is properly included in % For example, let %? = P 
and let 9 be the collection of sparse sets in NP tl co-NP. Assume that NP O co- 
NP is not the Boolean closure of 577 U 2 If A is a set in (NP rl co-NP) - Boolean 
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closure (E rl Y), then there exists a proper hard core H of A that is nonsparse and 
partially P-immune. Thus, Theorem 4.3 and its proof yield some information 
about some specific cases regarding well-studied complexity classes. 

Although Theorem 4.3 shows the existence of partially immune sets in the 
context of hard cores, it does not provide insight into some of the specific problems 
that arise in the context of complexity measures for public-key cryptosystems. 
For example, one might wish that the set A itself were partially ‘Z-immune; the 
theorem tells us nothing about this. In addition, there is no information given 
in Theorem 4.3 about the complexity of the set H and it is clear that such 
information would be very desirable. 

Orponen and Schoning [ 161 have shown that for every recursive set not in P and 
every running time T that majorizes every polynomial, there is an infinite com- 
plexity core H for A such that His recognizable by an algorithm with running time 
bounded above by T. Du [5] has shown that (assuming P # NP) every NP-complete 
set has an infinite proper hard core that can be recognized in exponential time. We 
would like to have a general theorem about the complexity of hard cores but this 
appears to be out of reach. What can be done is to consider “standard” complexity 
classes specified by machines with bounded computational resources such as time 
or space. For example, the following result can be obtained by using the methods 
of Orponen and Schoning [ 161. 

THEOREM 4.4. Let ST be a recursively enumerable collection of recursive func- 
tions that are running times. Let g’(F) be the class of sets recognized by algorithms 
that run within time bounds that are in K Let T be a running time that majorizes 
every function in 5? IfA is a recursive set not in g(F), then A has an infinite proper 
hard core that can be recognized in time T. 

Theorem 4.4 shows that the existence of a proper hard core whose complexity 
depends on the underlying class g(F) but not on the set for which it is a core. 
Thus, the complexity of a core seems to depend on the cost of “diagonalizing” out 
of the underlying class. But recall that every subset of a core is again a core so that 
this remark only pertains to cores obtained by certain procedures. 

Finally, we note that one of the referees has observed that several results have 
counterparts in recursive function theory. In addition, it has been pointed out by 
others that some of the topics that have been studied as part of the investigation of 
the structure of complexity cores may be of interest to those who work in recursive 
function theory. In particular, the lattice-theoretic structure of the collection of 
cores of an arbitrary set has been classified by Orponen [ 14, 151. Thus, in a sequel 
to the present paper, we develop a number of results about the structure of 
hard cores. 
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