Generic reducibilities

Alexander Rybalov

Sobolev Institute of Mathematics, Omsk

September, 2016

Alexander Rybalov Generic reducibilities

Classical reducibility

Definition

 $A \subseteq I$ reduces to $B \subseteq J$, if there is a computable function $f: I \rightarrow J$ such that $x \in A \Leftrightarrow f(x) \in B$ for all $x \in I$.

 $A \subseteq I$ reduces to $B \subseteq J$ we denote $A \leq B$.

 $A \subseteq I$ reduces to $B \subseteq J$ we denote $A \leq B$.

Properties

For all sets $A, B, C \subseteq I$

 $A \subseteq I$ reduces to $B \subseteq J$ we denote $A \leq B$.

Properties

For all sets $A, B, C \subseteq I$

• $A \leq A - reflexivity$,

 $A \subseteq I$ reduces to $B \subseteq J$ we denote $A \leq B$.

Properties

For all sets A, B, C ⊆ I
A ≤ A - reflexivity,
A ≤ B and B ≤ C implies A ≤ C - transitivity,

 $A \subseteq I$ reduces to $B \subseteq J$ we denote $A \leq B$.

Properties

- For all sets $A, B, C \subseteq I$
 - $A \leq A reflexivity$,
 - 2 $A \leq B$ and $B \leq C$ implies $A \leq C$ transitivity,
 - if A ≤ B and B is decidable, then A is decidable preserving of decidability.

Set $A \subseteq I$ generically reduces to $B \subseteq J$ $(A \leq_{Gen} B)$ if there is a computable function $f : I \times \mathbb{N} \to J \cup \{?\}$ such that

Set $A \subseteq I$ generically reduces to $B \subseteq J$ $(A \leq_{Gen} B)$ if there is a computable function $f : I \times \mathbb{N} \to J \cup \{?\}$ such that

Set $A \subseteq I$ generically reduces to $B \subseteq J$ $(A \leq_{Gen} B)$ if there is a computable function $f : I \times \mathbb{N} \to J \cup \{?\}$ such that

2
$$\rho({x \in I : f(x,0) ≠?}) = 1$$

Set $A \subseteq I$ generically reduces to $B \subseteq J$ $(A \leq_{Gen} B)$ if there is a computable function $f : I \times \mathbb{N} \to J \cup \{?\}$ such that

2
$$\rho({x \in I : f(x, 0) \neq ?}) = 1$$

Set $A \subseteq I$ generically reduces to $B \subseteq J$ $(A \leq_{Gen} B)$ if there is a computable function $f : I \times \mathbb{N} \to J \cup \{?\}$ such that

3
$$\forall x \in I$$
 if $f(x, 0) \neq ?$, then $\forall n \in \mathbb{N}$ $f(x, n) \neq ?$.

2
$$\rho(\{x \in I : f(x,0) \neq ?\}) = 1$$

●
$$\forall x \in I$$
 if $f(x,0) \neq$?, then $ho\Big(\{f(x,n): n \in \mathbb{N}\}\Big)>0$.

•
$$\forall x \in I \text{ if } f(x,0) \neq ?$$
, then

•
$$x \in A \Rightarrow \forall n \in \mathbb{N} f(x, n) \in B$$

•
$$x \notin A \Rightarrow \forall n \in \mathbb{N} f(x, n) \notin B.$$

Generic reducibility

< /i>

If $A \leq_{Gen} B$ and B is generically decidable, then A is generically decidable.

If $A \leq_{Gen} B$ and B is generically decidable, then A is generically decidable.

Generic algorithm, deciding $x \in A$?

If $A \leq_{Gen} B$ and B is generically decidable, then A is generically decidable.

Generic algorithm, deciding $x \in A$?

• Computes f(x,0). If f(x,0) = ? output ?

If $A \leq_{Gen} B$ and B is generically decidable, then A is generically decidable.

Generic algorithm, deciding $x \in A$?

- Computes f(x,0). If f(x,0) = ? output ?
- If f(x,0) ≠?, computes f(x,1), f(x,2),... until generic algorithm for B outputs on some f(x, k) defined answer.

If $A \leq_{Gen} B$ and B is generically decidable, then A is generically decidable.

Generic algorithm, deciding $x \in A$?

- Computes f(x,0). If f(x,0) = ? output ?
- If f(x,0) ≠?, computes f(x,1), f(x,2),... until generic algorithm for B outputs on some f(x, k) defined answer.
- It will be correct answer for A.

If $A \leq_{Gen} B$ and $B \leq_{Gen} C$, then $A \leq_{Gen} C$.

▲御▶ ▲ 副▶

æ

If $A \leq_{Gen} B$ and $B \leq_{Gen} C$, then $A \leq_{Gen} C$.

 $A \leq_{Gen} B$ by $f, B \leq_{Gen} C$ by g. How to construct a generic reduction h of A to C?

If $A \leq_{Gen} B$ and $B \leq_{Gen} C$, then $A \leq_{Gen} C$.

 $A \leq_{Gen} B$ by $f, B \leq_{Gen} C$ by g. How to construct a generic reduction h of A to C?

• Compute f(x, 0). If f(x, 0) =?, output h(x, n) =? for all n.

If $A \leq_{Gen} B$ and $B \leq_{Gen} C$, then $A \leq_{Gen} C$.

 $A \leq_{Gen} B$ by $f, B \leq_{Gen} C$ by g. How to construct a generic reduction h of A to C?

- Compute f(x,0). If f(x,0) =?, output h(x,n) =? for all n.
- If $f(x,0) \neq$? computes f(x,1), f(x,2), ... until $g(f(x,k), 0) \neq$?.

If $A \leq_{Gen} B$ and $B \leq_{Gen} C$, then $A \leq_{Gen} C$.

 $A \leq_{Gen} B$ by $f, B \leq_{Gen} C$ by g. How to construct a generic reduction h of A to C?

- Compute f(x,0). If f(x,0) =?, output h(x,n) =? for all n.
- If $f(x,0) \neq ?$ computes f(x,1), f(x,2), ... until $g(f(x,k),0) \neq ?$.
- Now h(x, n) = g(f(x, k), n) for all n.

There is a computably enumerable (c.e.) set $W \subseteq \mathbb{N}$ such that $W \nleq_{Gen} W$.

There is a computably enumerable (c.e.) set $W \subseteq \mathbb{N}$ such that $W \nleq_{Gen} W$.

Definition

Set $A \subseteq \mathbb{N}$ is *immune* if it is infinite but not containing infinite c.e. subsets.

There is a computably enumerable (c.e.) set $W \subseteq \mathbb{N}$ such that $W \nleq_{Gen} W$.

Definition

Set $A \subseteq \mathbb{N}$ is *immune* if it is infinite but not containing infinite c.e. subsets.

Definition

Set $B \subseteq \mathbb{N}$ is *simple* if B is c.e. and $\mathbb{N} \setminus B$ is immune.

If $W \subseteq \mathbb{N}$ is simple and non-generic, then $W \not\leq_{Gen} W$.

< /i>

If $W \subseteq \mathbb{N}$ is simple and non-generic, then $W \nleq_{Gen} W$.

• Suppose $W \not\leq_{Gen} W$ by some generic reduction f.

/⊒ > < ∃ >

If $W \subseteq \mathbb{N}$ is simple and non-generic, then $W \nleq_{Gen} W$.

- Suppose $W \not\leq_{Gen} W$ by some generic reduction f.
- $\mathbb{N} \setminus W$ is not negligible, so there is $x \notin W$ such that $f(x, 0) \neq$? and for all $f(x, k) \notin W$.

If $W \subseteq \mathbb{N}$ is simple and non-generic, then $W \nleq_{Gen} W$.

- Suppose $W \not\leq_{Gen} W$ by some generic reduction f.
- $\mathbb{N} \setminus W$ is not negligible, so there is $x \notin W$ such that $f(x, 0) \neq$? and for all $f(x, k) \notin W$.
- $\{f(x,0), f(x,1), \dots, \}$ is infinite c.e. subset of immune set $\mathbb{N} \setminus W$.

• $S_1, S_2, \ldots, S_k, \ldots$ – effective numeration of all c.e. sets.

∄▶ ∢ ≣▶ ∢

How to construct non-generic simple set?

S₁, S₂,..., S_k,... - effective numeration of all c.e. sets.
Step 0: W = ∅.

→ < Ξ → </p>

How to construct non-generic simple set?

- $S_1, S_2, \ldots, S_k, \ldots$ effective numeration of all c.e. sets.
- Step 0: $W = \emptyset$.
- Step i: add to W an element a ∈ S_i such that |a| is not equal to sizes of elements of W.

How to construct non-generic simple set?

- $S_1, S_2, \ldots, S_k, \ldots$ effective numeration of all c.e. sets.
- Step 0: $W = \emptyset$.
- Step i: add to W an element a ∈ S_i such that |a| is not equal to sizes of elements of W.
- $W \cap S_i \neq \emptyset$ for every infinite c.e. S_i .

- $S_1, S_2, \ldots, S_k, \ldots$ effective numeration of all c.e. sets.
- Step 0: $W = \emptyset$.
- Step i: add to W an element a ∈ S_i such that |a| is not equal to sizes of elements of W.
- $W \cap S_i \neq \emptyset$ for every infinite c.e. S_i .
- For every *n* there is only one element of size *n* in *W*, so

$$\rho(W) = \lim_{n \to \infty} \frac{|\mathbb{N}_n \cap W|}{|\mathbb{N}_n|} = \lim_{n \to \infty} \frac{1}{2^n} = 0.$$

Can every super undecidable set be constructed by cloning?

Can every super undecidable set be constructed by cloning?

Answer

No!

Can every super undecidable set be constructed by cloning?

Answer

No!

Theorem

• W is super undecidable.

Can every super undecidable set be constructed by cloning?

Answer

No!

Theorem

- W is super undecidable.
- There is no effective non-negligible cloning C : N → P(N) such W = C(S) for some c.e. set S ⊆ N.

Set K_0 of all Turing machines halting on 0 is generically complete in the class of all c.e. sets. For every c.e. set $A \ A \leq_{Gen} K_0$.

Set K_0 of all Turing machines halting on 0 is generically complete in the class of all c.e. sets. For every c.e. set $A \ A \leq_{Gen} K_0$.

Set K_0 of all Turing machines halting on 0 is generically complete in the class of all c.e. sets. For every c.e. set $A \ A \leq_{Gen} K_0$.

How to construct generic reduction f of c.e. set A to K_0 ?

• There is a classical reduction h of A to K_0 .

Set K_0 of all Turing machines halting on 0 is generically complete in the class of all c.e. sets. For every c.e. set $A \ A \leq_{Gen} K_0$.

- There is a classical reduction h of A to K_0 .
- Fix $x \in \mathbb{N}$. Compute h(x) some Turing machine.

Set K_0 of all Turing machines halting on 0 is generically complete in the class of all c.e. sets. For every c.e. set $A \ A \leq_{Gen} K_0$.

- There is a classical reduction h of A to K_0 .
- Fix $x \in \mathbb{N}$. Compute h(x) some Turing machine.
- Enumerate effectively machines from the clone of h(x):
 M₀, M₁, M₂,

Set K_0 of all Turing machines halting on 0 is generically complete in the class of all c.e. sets. For every c.e. set $A \ A \leq_{Gen} K_0$.

- There is a classical reduction h of A to K_0 .
- Fix $x \in \mathbb{N}$. Compute h(x) some Turing machine.
- Enumerate effectively machines from the clone of h(x):
 M₀, M₁, M₂,
- Now define $f(x, k) = M_k$.