# Amplification of algorithmic problems: cryptographic problems 

Alexander Rybalov

Sobolev Institute of Mathematics, Omsk
September, 2016

## Classical approach



Algorithm works correctly on all inputs.

## Generic approach



Algorithm works correctly on almost all inputs but can ignore some.

## Asymptotic density

## Definition

Let $I$ be all inputs, $I_{n}$ - all inputs of size $n$. Asymptotic density of set $S \subseteq 1$

$$
\mu(S)=\lim _{n \rightarrow \infty} \frac{\left|S \cap I_{n}\right|}{\left|I_{n}\right|} .
$$

## Asymptotic density

## Definition

Let $I$ be all inputs, $I_{n}$ - all inputs of size $n$. Asymptotic density of set $S \subseteq 1$

$$
\mu(S)=\lim _{n \rightarrow \infty} \frac{\left|S \cap I_{n}\right|}{\left|I_{n}\right|} .
$$

## Remark

$\frac{\left|S \cap I_{n}\right|}{\left|I_{n}\right|}$ is the probability to get an input from $S$ during random and uniform generation of inputs of size $n$.

## Generic algorithms

## Definition

Algorithm $\mathcal{A}: I \rightarrow J \cup\{?\}$ is called generic, if
(1) for every $x \in I \mathcal{A}(x)$ halts,
(2) $\mu(\{x: \mathcal{A}(x)=$ ? $\})=0$.

## Generic algorithms

## Definition

Algorithm $\mathcal{A}: I \rightarrow J \cup\{?\}$ is called generic, if
(1) for every $x \in I \mathcal{A}(x)$ halts,
(2) $\mu(\{x: \mathcal{A}(x)=$ ? $\})=0$.

## Definition

Generic algorithm $\mathcal{A}$ computes a function $f: I \rightarrow J$, if for every $x \in I$

$$
\mathcal{A}(x) \neq ? \Rightarrow f(x)=\mathcal{A}(x)
$$

## Cryptographic problems

## Cryptographic problems

(1) Discrete logarithm problem.

## Cryptographic problems

(1) Discrete logarithm problem.
(2) Problem of computing of square roots in groups of residue classes.

## Cryptographic problems

(1) Discrete logarithm problem.
(2) Problem of computing of square roots in groups of residue classes.
(3) Searching graph isomorphism problem.

## Cryptographic problems

(1) Discrete logarithm problem.
(2) Problem of computing of square roots in groups of residue classes.
(3) Searching graph isomorphism problem.

## Cryptographic hypothesis

For problems 1-3 there are no polynomial (probabilistic) algorithms, deciding their for all inputs.

## Generic amplification

## Theorem

If there exists a polynomial generic algorithm for a cryptographic problem, then there exists a polynomial probabilistic algorithm deciding it for all inputs.

## Generic amplification

## Theorem

If there exists a polynomial generic algorithm for a cryptographic problem, then there exists a polynomial probabilistic algorithm deciding it for all inputs.

## Corollary

If a cryptographic problem is hard in worst case, then it hard in generic case.

## Discrete logarithm problem

## Problem

$I=\left\{(a, g, p), p-\right.$ prime, $g-$ primitive $\left.G F(p), a \in G F(p)^{*}\right\}$,
Compute the function $d l: I \rightarrow \mathbb{N}$, defined in the following way:

$$
d l(a, g, p)=x \Leftrightarrow g^{x}=\text { а в } G F(p) .
$$

## Discrete logarithm problem

## Problem

$I=\left\{(a, g, p), p-\right.$ prime, $g-$ primitive $\left.G F(p), a \in G F(p)^{*}\right\}$,
Compute the function $d l: I \rightarrow \mathbb{N}$, defined in the following way:

$$
d l(a, g, p)=x \Leftrightarrow g^{x}=\text { а в } G F(p) .
$$

## Applications in cryptography

Diffie-Hellman protocol, El-Gamal scheme, Massey-Omura cryptosystem.

## Stratification

## Definition

Sequence

$$
\begin{gathered}
\pi=\left\{\left(p_{m}, g_{m}\right), m \in \mathbb{N}, \text { where } p_{m}-\text { prime },\right. \\
\left.g_{m} \text { - primitive in } G F\left(p_{m}\right)\right\}
\end{gathered}
$$

is called exponential, if $2^{m}<p_{m}<2^{m+1}$ for all $m$.

## Stratification

## Definition

Sequence

$$
\begin{gathered}
\pi=\left\{\left(p_{m}, g_{m}\right), m \in \mathbb{N}, \text { where } p_{m}-\text { prime },\right. \\
\left.g_{m} \text { - primitive in } G F\left(p_{m}\right)\right\}
\end{gathered}
$$

is called exponential, if $2^{m}<p_{m}<2^{m+1}$ for all $m$.

## Stratificated Discrete logarithm problem

$I_{\pi}=\left\{(a, g, p),(p, g) \in \pi, a \in G F(p)^{*}\right\}$,
Compute the function $d l_{\pi}=d| |_{I_{\pi}}$.

## Definition

Sequence

$$
\begin{gathered}
\pi=\left\{\left(p_{m}, g_{m}\right), m \in \mathbb{N}, \text { where } p_{m}-\text { prime },\right. \\
\left.g_{m}-\text { primitive in } G F\left(p_{m}\right)\right\}
\end{gathered}
$$

is called exponential, if $2^{m}<p_{m}<2^{m+1}$ for all $m$.

## Stratificated Discrete logarithm problem

$I_{\pi}=\left\{(a, g, p),(p, g) \in \pi, a \in G F(p)^{*}\right\}$,
Compute the function $d l_{\pi}=\left.d\right|_{I_{\pi}}$.
Size of input $(a, g, p)$ is the length of binary expansion of $p$.

## Definition

Sequence

$$
\begin{gathered}
\pi=\left\{\left(p_{m}, g_{m}\right), m \in \mathbb{N}, \text { where } p_{m}-\text { prime },\right. \\
\left.g_{m}-\text { primitive in } G F\left(p_{m}\right)\right\}
\end{gathered}
$$

is called exponential, if $2^{m}<p_{m}<2^{m+1}$ for all $m$.

## Stratificated Discrete logarithm problem

$I_{\pi}=\left\{(a, g, p),(p, g) \in \pi, a \in G F(p)^{*}\right\}$,
Compute the function $d l_{\pi}=\left.d\right|_{I_{\pi}}$.
Size of input $(a, g, p)$ is the length of binary expansion of $p$. Input set of size $n$ : all triples of type $(a, g, p)$, where $g, p$ are fixed, $a \in G F(p)^{*}$.

## Discrete logarithm problem is generically hard

## Theorem

If there is no polynomial probabilistic algorithm for $d l$, then there exists an exponential sequence $\pi$ such that there is no probabilistic algorithm for $d l_{\pi}$.

## Discrete logarithm problem is generically hard

## Theorem

If there is no polynomial probabilistic algorithm for $d l$, then there exists an exponential sequence $\pi$ such that there is no probabilistic algorithm for $d l_{\pi}$.

## Theorem

If there is a polynomial generic algorithm for $d l_{\pi}$, then there is polynomial probabilistic algorithm computing $d l_{\pi}$ for all inputs.

## Amplification of Discrete logarithm

$(a, g, p) \rightarrow\left(a g^{k}, g, p\right)$, where $k$ is randomly and uniformly generated number from 0 to $p-2$.

## Amplification of Discrete logarithm

$(a, g, p) \rightarrow\left(a g^{k}, g, p\right)$, where $k$ is randomly and uniformly generated number from 0 to $p-2$.
$a g^{k}=g^{x} \Rightarrow a=g^{x-k}$.

Problem of computing of square roots in groups of residue classes

## Problem

$I=\{(a, m): m=p q, p, q-$ primes, $a \in \mathbb{Z} /(m)\}$,
Compute the function $s r: I \rightarrow \mathbb{N}$, defined in the following way:

$$
s r(a, m)=\left\{\begin{array}{l}
x, \text { if } x^{2}=\text { а в } \mathbb{Z} /(m) \\
0, \text { otherwise }
\end{array}\right.
$$

## Problem of computing of square roots in groups of residue classes

## Problem

$I=\{(a, m): m=p q, p, q-$ primes, $a \in \mathbb{Z} /(m)\}$,
Compute the function sr: $I \rightarrow \mathbb{N}$, defined in the following way:

$$
s r(a, m)=\left\{\begin{array}{l}
x, \text { if } x^{2}=\text { а в } \mathbb{Z} /(m) \\
0, \text { otherwise }
\end{array}\right.
$$

Applications in cryptography

## Rabin cryptosystem.

## Definition

Sequence

$$
\mu=\left\{m_{k}, k \in \mathbb{N}, \text { где } m_{k} \text { - произведение двух простых }\right\}
$$

is called exponential, if $2^{k}<m_{k}<2^{k+1}$ for all $k$.

## Definition

Sequence

$$
\mu=\left\{m_{k}, k \in \mathbb{N} \text {, где } m_{k} \text { - произведение двух простых }\right\}
$$

is called exponential, if $2^{k}<m_{k}<2^{k+1}$ for all $k$.

## Stratificated problem

$I_{\mu}=\{(a, m): m \in \mu, a \in \mathbb{Z} /(m)\}$,
Compute the function $s r_{\mu}=s r \mid I_{\mu}$.

## Definition

Sequence

$$
\mu=\left\{m_{k}, k \in \mathbb{N} \text {, где } m_{k} \text { - произведение двух простых }\right\}
$$

is called exponential, if $2^{k}<m_{k}<2^{k+1}$ for all $k$.

## Stratificated problem

$I_{\mu}=\{(a, m): m \in \mu, a \in \mathbb{Z} /(m)\}$,
Compute the function $s r_{\mu}=\left.s r\right|_{\mu}$.
Size of input $(a, m)$ is the length of binary expansion of $m$.

## Definition

Sequence

$$
\mu=\left\{m_{k}, k \in \mathbb{N} \text {, где } m_{k} \text { - произведение двух простых }\right\}
$$

is called exponential, if $2^{k}<m_{k}<2^{k+1}$ for all $k$.

## Stratificated problem

$I_{\mu}=\{(a, m): m \in \mu, a \in \mathbb{Z} /(m)\}$,
Compute the function $s r_{\mu}=\left.s r\right|_{\mu}$.
Size of input $(a, m)$ is the length of binary expansion of $m$. Set of inputs of size $n$ : all pairs of type $(a, m)$, where $m$ is fixed, $a \in \mathbb{Z} /(m)$.

## Square root problem is generically hard

## Theorem

If there is no polynomial probabilistic algorithm for $s r$, then there exists an exponential sequence $\mu$ such that there is no probabilistic algorithm for $s r_{\mu}$.

## Theorem

If there is no polynomial probabilistic algorithm for $s r$, then there exists an exponential sequence $\mu$ such that there is no probabilistic algorithm for $s r_{\mu}$.

## Theorem

If there is a polynomial generic algorithm for $s r_{\mu}$, then there is polynomial probabilistic algorithm computing $s r_{\mu}$ for all inputs.

## Amplification of the square root problem

$(a, m) \rightarrow\left(a b^{2}, m\right)$, where $b$ is randomly and uniformly generated element from $\mathbb{Z} /(m)$.

## Amplification of the square root problem

$(a, m) \rightarrow\left(a b^{2}, m\right)$, where $b$ is randomly and uniformly generated element from $\mathbb{Z} /(m)$. $a b^{2}=x^{2} \Rightarrow a=\left(x b^{-1}\right)^{2}$.

## Searching graph isomorphism problem

## Problem

$I=\left\{\left(G_{1}, G_{2}\right), G_{1}, G_{2}-\right.$ isomorphic graphs $\}$. Compute the function sgi: I $\rightarrow S_{1} \cup S_{2} \cup \ldots S_{n} \cup \ldots$, defined in the following way:
$\operatorname{sgi}\left(G_{1}, G_{2}\right)=$ permutation of vertices - isomorphism $G_{1}$ and $G_{2}$.

## Searching graph isomorphism problem

## Problem

$I=\left\{\left(G_{1}, G_{2}\right), G_{1}, G_{2}-\right.$ isomorphic graphs $\}$. Compute the function sgi : I $\rightarrow S_{1} \cup S_{2} \cup \ldots S_{n} \cup \ldots$, defined in the following way:
$\operatorname{sgi}\left(G_{1}, G_{2}\right)=$ permutation of vertices - isomorphism $G_{1}$ and $G_{2}$.

## Applications in cryptography

Zero-knowledge proof (Shafi Goldwasser, Silvio Micali, and Charles Rackoff).

## Stratification

## Denotation

Sequence of graphs

$$
\gamma=\left\{G_{n}, n \in \mathbb{N}, \text { where } G_{n}-\text { graph with } n \text { vertices }\right\} .
$$

## Stratification

## Denotation

Sequence of graphs

$$
\gamma=\left\{G_{n}, n \in \mathbb{N}, \text { where } G_{n}-\text { graph with } n \text { vertices }\right\} .
$$

## Problem

$I_{\gamma}=\left\{\left(G_{1}, G_{2}\right): G_{2} \in \gamma\right\}$. Compute the function $s g i_{\gamma}=\left.s g i\right|_{I_{\gamma}}$.

## Denotation

Sequence of graphs

$$
\gamma=\left\{G_{n}, n \in \mathbb{N}, \text { where } G_{n}-\text { graph with } n \text { vertices }\right\} .
$$

## Problem

$I_{\gamma}=\left\{\left(G_{1}, G_{2}\right): G_{2} \in \gamma\right\}$. Compute the function $s g i_{\gamma}=\left.s g i\right|_{\iota_{\gamma}}$.
Size of input $\left(G_{1}, G_{2}\right)$ is number of vertices of $G_{2}$.

## Denotation

Sequence of graphs

$$
\gamma=\left\{G_{n}, n \in \mathbb{N}, \text { where } G_{n}-\text { graph with } n \text { vertices }\right\} .
$$

## Problem

$I_{\gamma}=\left\{\left(G_{1}, G_{2}\right): G_{2} \in \gamma\right\}$. Compute the function $s g i_{\gamma}=\left.s g i\right|_{I_{\gamma}}$.
Size of input $\left(G_{1}, G_{2}\right)$ is number of vertices of $G_{2}$. Set of inputs of size $n$ : all pairs of type ( $G_{1}, G_{2}$ ), where $G_{2}$ is fixed, $G_{1}$ is graph isomorphic to $G_{2}$.

## Searching graph isomorphism problem is generically hard

## Theorem

If there is no polynomial probabilistic algorithm for sgi, then there exists a graph sequence $\gamma$ such that there is no probabilistic algorithm for sgi ${ }_{\gamma}$.

## Theorem

If there is no polynomial probabilistic algorithm for sgi, then there exists a graph sequence $\gamma$ such that there is no probabilistic algorithm for sgi .

## Theorem

If there is a polynomial generic algorithm for $s g i_{\gamma}$, then there is polynomial probabilistic algorithm computing sgi $i_{\gamma}$ for all inputs.

## Amplification of the Searching graph isomorphism problem

$\left(G_{1}, G_{2}\right) \rightarrow\left(\pi\left(G_{1}\right), G_{2}\right)$, where $\pi$ is randomly and uniformly generated permutation from $S_{n}$.

## Amplification of the Searching graph isomorphism problem

$\left(G_{1}, G_{2}\right) \rightarrow\left(\pi\left(G_{1}\right), G_{2}\right)$, where $\pi$ is randomly and uniformly generated permutation from $S_{n}$.
$\tau\left(\pi\left(G_{1}\right)\right)=G_{2} \Rightarrow \chi=\tau \pi$.

