Amplification of algorithmic problems: cryptographic problems

Alexander Rybalov

Sobolev Institute of Mathematics, Omsk

September, 2016

Classical approach

Algorithm works correctly on **all** inputs.

∃ → < ∃</p>

Generic approach

Algorithm works correctly on **almost all** inputs but can ignore some.

A B > A B >

Let I be all inputs, I_n - all inputs of size n. Asymptotic density of set $S \subseteq I$ $\mu(S) = \lim_{n \to \infty} \frac{|S \cap I_n|}{|I_n|}.$

Let I be all inputs, I_n – all inputs of size n. Asymptotic density of set $S \subseteq I$

$$\mu(S) = \lim_{n \to \infty} \frac{|S \cap I_n|}{|I_n|}.$$

Remark

 $\frac{|S \cap I_n|}{|I_n|}$ is the probability to get an input from S during random and uniform generation of inputs of size n.

Algorithm $\mathcal{A}: I \rightarrow J \cup \{?\}$ is called **generic**, if

• for every
$$x \in I \ \mathcal{A}(x)$$
 halts,

2
$$\mu(\{x : \mathcal{A}(x) = ?\}) = 0.$$

→ Ξ →

Algorithm $\mathcal{A}: I \rightarrow J \cup \{?\}$ is called **generic**, if

$${f 0}$$
 for every $x\in I$ ${\cal A}(x)$ halts,

2
$$\mu(\{x : \mathcal{A}(x) = ?\}) = 0.$$

Definition

Generic algorithm $\mathcal A$ computes a function $f:I \to J,$ if for every $x \in I$

$$\mathcal{A}(x) \neq ? \Rightarrow f(x) = \mathcal{A}(x).$$

→ Ξ →

Cryptographic problems

Alexander Rybalov Amplification of algorithmic problems: cryptographic problem

э

Discrete logarithm problem.

-

- Discrete logarithm problem.
- Problem of computing of square roots in groups of residue classes.

- Discrete logarithm problem.
- Problem of computing of square roots in groups of residue classes.
- Searching graph isomorphism problem.

- Discrete logarithm problem.
- Problem of computing of square roots in groups of residue classes.
- Searching graph isomorphism problem.

Cryptographic hypothesis

For problems 1-3 there are no polynomial (probabilistic) algorithms, deciding their for all inputs.

Theorem

If there exists a polynomial generic algorithm for a cryptographic problem, then there exists a polynomial probabilistic algorithm deciding it for all inputs.

Theorem

If there exists a polynomial generic algorithm for a cryptographic problem, then there exists a polynomial probabilistic algorithm deciding it for all inputs.

Corollary

If a cryptographic problem is hard in worst case, then it hard in generic case.

Problem

 $I = \{(a, g, p), p - \text{prime}, g - \text{primitive } GF(p), a \in GF(p)^*\},\$ Compute the function $dI : I \rightarrow \mathbb{N}$, defined in the following way:

$$dl(a,g,p) = x \Leftrightarrow g^x = a \ \mathsf{B} \ \mathsf{GF}(p).$$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Problem

 $I = \{(a, g, p), p - \text{prime}, g - \text{primitive } GF(p), a \in GF(p)^*\},\$ Compute the function $dI : I \rightarrow \mathbb{N}$, defined in the following way:

$$dl(a,g,p) = x \Leftrightarrow g^x = a \ \mathsf{B} \ \mathsf{GF}(p).$$

Applications in cryptography

Diffie-Hellman protocol, El-Gamal scheme, Massey-Omura cryptosystem.

Sequence

$$\pi = \{(p_m, g_m), m \in \mathbb{N}, where p_m - prime,$$

 $g_m - primitive in \ GF(p_m)\}$
is called **exponential**, if $2^m < p_m < 2^{m+1}$ for all m .

イロン イロン イヨン イヨン

э

Sequence

$$\pi = \{(p_m, g_m), m \in \mathbb{N}, where p_m - prime, \}$$

 g_m - primitive in $GF(p_m)$ }

is called **exponential**, if $2^m < p_m < 2^{m+1}$ for all *m*.

Stratificated Discrete logarithm problem

 $I_{\pi} = \{(a, g, p), (p, g) \in \pi, a \in GF(p)^*\},$ Compute the function $dI_{\pi} = dI|_{I_{\pi}}.$

Sequence

$$\pi = \{(p_m, g_m), m \in \mathbb{N}, where p_m - prime, \}$$

 g_m - primitive in $GF(p_m)$ }

is called **exponential**, if $2^m < p_m < 2^{m+1}$ for all *m*.

Stratificated Discrete logarithm problem

 $I_{\pi} = \{(a, g, p), (p, g) \in \pi, a \in GF(p)^*\},$ Compute the function $dI_{\pi} = dI|_{I_{\pi}}.$

Size of input (a, g, p) is the length of binary expansion of p.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Sequence

$$\pi = \{(p_m, g_m), m \in \mathbb{N}, where p_m - prime, \}$$

 g_m - primitive in $GF(p_m)$ }

is called **exponential**, if $2^m < p_m < 2^{m+1}$ for all *m*.

Stratificated Discrete logarithm problem

 $I_{\pi} = \{(a, g, p), (p, g) \in \pi, a \in GF(p)^*\},$ Compute the function $dI_{\pi} = dI|_{I_{\pi}}.$

Size of input (a, g, p) is the length of binary expansion of p. Input set of size n: all triples of type (a, g, p), where g, p are fixed, $a \in GF(p)^*$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

If there is no polynomial probabilistic algorithm for dI, then there exists an exponential sequence π such that there is no probabilistic algorithm for dI_{π} .

Theorem

If there is no polynomial probabilistic algorithm for dI, then there exists an exponential sequence π such that there is no probabilistic algorithm for dI_{π} .

Theorem

If there is a polynomial generic algorithm for dl_{π} , then there is polynomial probabilistic algorithm computing dl_{π} for all inputs. $(a, g, p) \rightarrow (ag^k, g, p)$, where k is randomly and uniformly generated number from 0 to p - 2.

 $(a, g, p) \rightarrow (ag^k, g, p)$, where k is randomly and uniformly generated number from 0 to p - 2. $ag^k = g^x \Rightarrow a = g^{x-k}$.

b) a (B) b) a (B) b)

Problem of computing of square roots in groups of residue classes

Problem

 $I = \{(a, m) : m = pq, p, q - \text{ primes}, a \in \mathbb{Z}/(m)\},\$ Compute the function $sr : I \to \mathbb{N}$, defined in the following way:

$$sr(a,m) = \begin{cases} x, \text{ if } x^2 = a \text{ B } \mathbb{Z}/(m), \\ 0, \text{ otherwise.} \end{cases}$$

Problem of computing of square roots in groups of residue classes

Problem

 $I = \{(a, m) : m = pq, p, q - \text{ primes}, a \in \mathbb{Z}/(m)\},\$ Compute the function $sr : I \to \mathbb{N}$, defined in the following way:

$$sr(a,m) = \begin{cases} x, \text{ if } x^2 = a \text{ B } \mathbb{Z}/(m), \\ 0, \text{ otherwise.} \end{cases}$$

Applications in cryptography

Rabin cryptosystem.

Sequence

 $\mu = \{m_k, \ k \in \mathbb{N},$ где m_k – произведение двух простых $\}$

is called **exponential**, if $2^k < m_k < 2^{k+1}$ for all k.

Image: A Image: A

Sequence

 $\mu = \{m_k, \ k \in \mathbb{N},$ где m_k – произведение двух простых $\}$

is called **exponential**, if $2^k < m_k < 2^{k+1}$ for all k.

Stratificated problem

$$I_{\mu} = \{(a,m): m \in \mu, a \in \mathbb{Z}/(m)\},$$

Compute the function $sr_{\mu} = sr|_{I_{\mu}}.$

伺 ト イヨト イヨト

Sequence

 $\mu = \{m_k, \ k \in \mathbb{N},$ где m_k – произведение двух простых $\}$

is called **exponential**, if $2^k < m_k < 2^{k+1}$ for all k.

Stratificated problem

$$I_{\mu} = \{(a,m): m \in \mu, a \in \mathbb{Z}/(m)\},$$

Compute the function $sr_{\mu} = sr|_{I_{\mu}}.$

Size of input (a, m) is the length of binary expansion of m.

Sequence

 $\mu = \{m_k, \ k \in \mathbb{N},$ где m_k – произведение двух простых $\}$

is called exponential, if $2^k < m_k < 2^{k+1}$ for all k.

Stratificated problem

$$egin{aligned} &I_\mu = \{(a,m): \ m \in \mu, \ a \in \mathbb{Z}/(m)\}, \ & ext{Compute the function } sr_\mu = sr|_{I_\mu}. \end{aligned}$$

Size of input (a, m) is the length of binary expansion of m. Set of inputs of size n: all pairs of type (a, m), where m is fixed, $a \in \mathbb{Z}/(m)$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem

If there is no polynomial probabilistic algorithm for sr, then there exists an exponential sequence μ such that there is no probabilistic algorithm for sr_{μ} .

Theorem

If there is no polynomial probabilistic algorithm for sr, then there exists an exponential sequence μ such that there is no probabilistic algorithm for sr_{μ} .

Theorem

If there is a polynomial generic algorithm for sr_{μ} , then there is polynomial probabilistic algorithm computing sr_{μ} for all inputs. $(a,m)
ightarrow (ab^2,m)$, where b is randomly and uniformly generated element from $\mathbb{Z}/(m)$.

 $(a, m) \rightarrow (ab^2, m)$, where *b* is randomly and uniformly generated element from $\mathbb{Z}/(m)$. $ab^2 = x^2 \Rightarrow a = (xb^{-1})^2$.

Problem

 $I = \{(G_1, G_2), G_1, G_2 - \text{ isomorphic graphs}\}$. Compute the function $sgi : I \rightarrow S_1 \cup S_2 \cup \ldots S_n \cup \ldots$, defined in the following way:

 $sgi(G_1, G_2) = permutation of vertices - isomorphism G_1 and G_2.$

くぼう くほう くほう

Problem

 $I = \{(G_1, G_2), G_1, G_2 - \text{ isomorphic graphs}\}$. Compute the function $sgi : I \rightarrow S_1 \cup S_2 \cup \ldots S_n \cup \ldots$, defined in the following way:

 $sgi(G_1, G_2) = permutation of vertices - isomorphism G_1 and G_2.$

Applications in cryptography

Zero-knowledge proof (Shafi Goldwasser, Silvio Micali, and Charles Rackoff).

・ 同 ト ・ ヨ ト ・ ヨ ト

Sequence of graphs

$$\gamma = \{G_n, n \in \mathbb{N}, \text{where } G_n - \text{graph with } n \text{ vertices}\}.$$

◆□ > ◆□ > ◆豆 > ◆豆 >

э

Sequence of graphs

$$\gamma = \{G_n, n \in \mathbb{N}, \text{where } G_n - \text{graph with } n \text{ vertices}\}.$$

Problem

$$I_{\gamma} = \{(G_1, G_2): \ G_2 \in \gamma\}.$$
 Compute the function $\mathit{sgi}_{\gamma} = \mathit{sgi}|_{I_{\gamma}}.$

・ロト ・四ト ・ヨト ・ヨト

э

Sequence of graphs

$$\gamma = \{G_n, n \in \mathbb{N}, \text{where } G_n - \text{graph with } n \text{ vertices}\}.$$

Problem

$$I_\gamma = \{(\mathit{G}_1, \mathit{G}_2): \ \mathit{G}_2 \in \gamma\}.$$
 Compute the function $\mathit{sgi}_\gamma = \mathit{sgi}|_{I_\gamma}.$

Size of input (G_1, G_2) is number of vertices of G_2 .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Sequence of graphs

$$\gamma = \{G_n, n \in \mathbb{N}, \text{where } G_n - \text{graph with } n \text{ vertices}\}.$$

Problem

$$I_{\gamma} = \{(G_1,G_2): \ G_2 \in \gamma\}.$$
 Compute the function $\mathit{sgi}_{\gamma} = \mathit{sgi}|_{I_{\gamma}}.$

Size of input (G_1, G_2) is number of vertices of G_2 . Set of inputs of size *n*: all pairs of type (G_1, G_2) , where G_2 is fixed, G_1 is graph isomorphic to G_2 .

・ 同 ト ・ 三 ト ・

Searching graph isomorphism problem is generically hard

Theorem

If there is no polynomial probabilistic algorithm for sgi, then there exists a graph sequence γ such that there is no probabilistic algorithm for sgi_{γ} .

Searching graph isomorphism problem is generically hard

Theorem

If there is no polynomial probabilistic algorithm for sgi, then there exists a graph sequence γ such that there is no probabilistic algorithm for sgi_{γ} .

Theorem

If there is a polynomial generic algorithm for sgi_{γ} , then there is polynomial probabilistic algorithm computing sgi_{γ} for all inputs. $(G_1, G_2) \rightarrow (\pi(G_1), G_2)$, where π is randomly and uniformly generated permutation from S_n .

 $(G_1, G_2) \rightarrow (\pi(G_1), G_2)$, where π is randomly and uniformly generated permutation from S_n . $\tau(\pi(G_1)) = G_2 \Rightarrow \chi = \tau \pi$.