Amplification of algorithmic problems: decidable problems

Alexander Rybalov

Sobolev Institute of Mathematics, Omsk

September, 2016

Presburger Arithmetic (PA)

Definition

Presburger Arithmetic is the first-order theory of the structure $<\mathbb{N},+>$.

Theorem (Presburger, 1929)

Presburger Arithmetic is decidable.

Theorem (Fischer, Rabin, 1974)

There is no algorithm for deciding of Presburger Arithmetic with worst-case complexity less than $2^{2^{c n}}$ with some universal constant $c>0$.

Decidability Problem of PA

- INPUT: a first-order closed formula Φ of the signature $\{+\}$
- OUTPUT: YES, if Φ holds in $<\mathbb{N},+>$;

NO, otherwise
$\forall x \exists y(x=y+y)$ does not hold in $<\mathbb{N},+>$ $\exists x \exists y(x=y+y)$ holds in $<\mathbb{N},+>$

Generic-Case Complexity of PA

- INPUT: a first-order closed formula Φ of the signature $\{+\}$
- OUTPUT: YES, if Φ holds in $<\mathbb{N},+>$;

NO, otherwise
I DON'T KNOW, sometimes
(very rarely)

Asymptotic density

Definition

Let I be all inputs, I_{n} - all inputs of size n. Asymptotic density of set $S \subseteq 1$

$$
\mu(S)=\lim _{n \rightarrow \infty} \frac{\left|S \cap I_{n}\right|}{\left|I_{n}\right|} .
$$

Asymptotic density

Definition

Let I be all inputs, I_{n} - all inputs of size n. Asymptotic density of set $S \subseteq 1$

$$
\mu(S)=\lim _{n \rightarrow \infty} \frac{\left|S \cap I_{n}\right|}{\left|I_{n}\right|} .
$$

Remark

$\frac{\left|S \cap I_{n}\right|}{\left|I_{n}\right|}$ is the probability to get an input from S during random and uniform generation of inputs of size n.

Generic sets

Definition

A set $S \subseteq 1$ is called

- generic if $\mu(S)=1$
- negligible if $\mu(S)=0$
- strongly negligible if there are constants $0<\sigma<1$ and $C>0$ such that for every n

$$
\frac{\left|S \cap I_{n}\right|}{\left|I_{n}\right|}<C \sigma^{n}
$$

- strongly generic if $S \backslash /$ is strongly negligible

Generic decidability

Definition

$S \subseteq I$ is (strongly) generically decidable (within polynomial time, exponential time, etc.) if there is a set G such that:

1. G is (strongly) generic
2. G is decidable (within polynomial, exponential time, etc.)
3. $S \cap G$ is decidable (within polynomial, exponential time, etc.)

Generic decidability

Definition

$S \subseteq I$ is (strongly) generically decidable (within polynomial time, exponential time, etc.) if there is a set G such that:

1. G is (strongly) generic
2. G is decidable (within polynomial, exponential time, etc.)
3. $S \cap G$ is decidable (within polynomial, exponential time, etc.)

Definition

A generic algorithm deciding S works on input a in the following way:

1. decides $a \in G$?
2. if $a \notin G$ then outputs "I DON'T KNOW"
3. if $a \in G$ then decides $a \in S \cap G$?

Generic decidability is not enough!

1. Problem Π feasible (polynomial) on G
2. G - generic and

$$
\frac{\left|G \cap I_{n}\right|}{\left|I_{n}\right|}=\frac{n-1}{n}
$$

Polynomial algorithm for generation of bad inputs of Π :
Step 1. Generate random input x of size n.
Step 2. If $x \in G$ goto step 1, end otherwise.
Probability to get inputs only from G within n^{2} rounds:

$$
\left(\frac{n-1}{n}\right)^{n^{2}}=\left(\left(1-\frac{1}{n}\right)^{n}\right)^{n} \rightarrow e^{-n}
$$

Generic amplification of PA

Theorem

There is no strongly generic set of formulas on which Presburger Arithmetic is decidable in exponential time.

Representation of Formulas

Arithmetical formulas are coded by binary trees (size is the number of vertices):

$$
\begin{gathered}
\forall x_{1} \forall x_{2} \exists x_{3}\left(\left(\left(x_{1}=x_{2}\right) \vee\left(x_{2}=x_{1}+x_{3}\right)\right) \&\left(x_{1}=x_{2}+x_{3}\right)\right) \vee\left(x_{3} \neq\right. \\
\left.x_{2}+x_{1}\right)
\end{gathered}
$$

Generic amplification of PA

Suppose we can check truthfulness of formulas from some strongly generic set G.
How to check a formula $\Phi \notin G$?
We can generate formulas from

$$
A N D(\Phi)=\{\Phi \wedge \Psi, \Psi-\text { arbitrary formula }\}
$$

and

$$
O R(\Phi)=\{\Phi \vee \Psi, \Psi-\text { arbitrary formula }\}
$$

until gets a formula Δ from G.
If $\Delta=\Phi \wedge \Psi$ and Δ is true, then Φ is true!
If $\Delta=\Phi \vee \Psi$ and Δ is false, then Φ is false!
Otherwise continue to generate formulas from $A N D(\Phi)$ and $O R(\Phi)$.

Generic amplification of PA

$$
\begin{gathered}
A N D(\Phi)^{+}=\{\Phi \wedge \Psi, \Psi-\text { arbitrary true formula }\}, \\
O R(\Phi)^{-}=\{\Phi \vee \Psi, \Psi-\text { arbitrary false formula }\} .
\end{gathered}
$$

Lemma

For any Φ sets $A N D(\Phi)^{+}$and $O R(\Phi)^{-}$are not strongly negligible. Moreover, there is a constant $C>0$ such that

$$
\frac{\left|A N D(\Phi)^{+} \cap \mathcal{F}_{n}\right|}{\left|\mathcal{F}_{n}\right|}>\frac{C}{(16 n)^{3 k}}
$$

for any $n>k$, where k is the size of Φ. The same bound is true for the set $O R(\Phi)^{-}$.
$\Rightarrow G \cap A N D(\Phi)^{+}$and $G \cap O R(\Phi)^{-}$are not empty

Satisfiability of Boolean formulas (SAT)

- INPUT: boolean formula $\Phi\left(x_{1}, \ldots, x_{n}\right)$
- OUTPUT:

YES, if there exists $\bar{a} \in\{0,1\}^{n}$ such that $\Phi(\bar{a})=1$, NO, otherwise.

Theorem (Cook, 1971)

SAT is NP-complete.

Representation of formulas

Generic amplification of SAT

Theorem

If $P \neq N P$ and $B P P=P$ then there is no polynomial strongly generic set of formulas on which SAT is decidable in polynomial time.

BPP and probabilistic algorithms

Definition

Problem $S \in B P P$ if S solvable by an NP-machine such that

- If the answer is 'yes' then at least $2 / 3$ of the computation paths accept.
- If the answer is 'no' then at most $1 / 3$ of the computation paths accept.

Conjecture No. 2 in Computer Science

$B P P=P$

Generic amplification of SAT

(1) We can check satisfiability of formulas from strongly generic set G.
(2) How to check formula Φ not from G ?
(3) Generate random Ψ of appropriate size and check:

$$
\begin{gathered}
\Phi \wedge \Psi \in G \text { and } \Phi \wedge \Psi \text { satisfiable } \Rightarrow \Phi \text { satisfiable } \\
\Phi \wedge \neg \Psi \in G \text { and } \Phi \wedge \neg \Psi \text { satisfiable } \Rightarrow \Phi \text { satisfiable }
\end{gathered}
$$

(1) If Φ was decided END, else GOTO step 3 .

