Amplification of algorithmic problems: undecidable problems

Alexander Rybalov

Sobolev Institute of Mathematics, Omsk

September, 2016

Alexander Rybalov Amplification of algorithmic problems: undecidable problem

Classical approach

Algorithm works correctly on **all** inputs.

Generic approach

Algorithm works correctly on **almost all** inputs but can ignore some.

∃ → < ∃ →</p>

Let I be all inputs, I_n - all inputs of size n. Asymptotic density of set $S \subseteq I$ $\mu(S) = \lim_{n \to \infty} \frac{|S \cap I_n|}{|I_n|}.$

Let I be all inputs, I_n – all inputs of size n. Asymptotic density of set $S \subseteq I$

$$\mu(S) = \lim_{n \to \infty} \frac{|S \cap I_n|}{|I_n|}.$$

Remark

 $\frac{|S \cap I_n|}{|I_n|}$ is the probability to get an input from S during random and uniform generation of inputs of size n.

Set $S \subseteq I$ is called

• generic if
$$\mu(S) = 1$$
,

▲御▶ ▲理▶ ★理≯

э

Set $S \subseteq I$ is called

- generic if $\mu(S) = 1$,
- negligible if $\mu(S) = 0$.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Set $S \subseteq I$ is called **generically decidable** if there exists a decidable generic set $G \subseteq I$ such that $S \cap G$ is decidable.

Set $S \subseteq I$ is called **generically decidable** if there exists a decidable generic set $G \subseteq I$ such that $S \cap G$ is decidable.

Definition

Set $S \subseteq I$ is called **super undecidable** if it is not generically decidable.

Let I and J be input sets. Function $C: I \rightarrow P(J)$ is called **cloning** I to J if

- **2** There is an algorithm $E: I \times \mathbb{N} \to J$ such that for all $x \in I$

$$C(x) = \{E(x,0), E(x,1), \ldots, \}$$

Let I and J be input sets. Function $C: I \rightarrow P(J)$ is called **cloning** I to J if

2 There is an algorithm $E: I \times \mathbb{N} \to J$ such that for all $x \in I$

$$C(x) = \{E(x,0), E(x,1), \ldots, \}$$

Definition

Cloning of $S \subseteq I$ is $C(S) = \bigcup_{x \in S} C(x)$.

Let I and J be input sets. Function $C: I \rightarrow P(J)$ is called **cloning** I to J if

2 There is an algorithm $E: I \times \mathbb{N} \to J$ such that for all $x \in I$

$$C(x) = \{E(x,0), E(x,1), \dots, \}$$

Definition

Cloning of
$$S \subseteq I$$
 is $C(S) = \bigcup_{x \in S} C(x)$.

Definition

Cloning C is non-negligible if $\mu(C(x)) > 0$ for all $x \in I$.

・ロト ・ 同ト ・ ヨト ・

Generic amplification

< 一型

Image: A Image: A

Theorem (Miasnikov, Rybalov, 2008)

Let $C : I \to P(J)$ be a non-negligible cloning and $S \subseteq I$ is undecidable. Then C(S) is super undecidable.

・ロト ・聞 と ・ ほ と ・ ほ と …

æ

・ロン ・部と ・ヨン ・ヨン

æ

Halting Problem

- Input: A Turing machine *M* over alphabet {0,1}.
- Output:

if *M* halts on 0,
 if *M* does not halt on 0.

Theorem (Turing)

The Halting Problem is algorithmically undecidable.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

States

Non-final states q_1, \ldots, q_n . Final state q_0 . Size of Turing machine is the number of non-final states.

Program

t

$$(q_1, 0)
ightarrow (q_{j_1}, t_1, D_1), \ (q_1, 1)
ightarrow (q_{j_2}, t_2, D_2), \ \dots \ (q_n, 1)
ightarrow (q_{j_{2n}}, t_{2n}, D_{2n})$$

→ < Ξ → <</p>

Turing machine M is **normalized**, if for every state q_i corresponding commands have the form

$$egin{aligned} (q_i,0) &
ightarrow (q_j,t_1,D_1), \ (q_i,1) &
ightarrow (q_k,t_2,D_2), \end{aligned}$$

where $j, k \leq 2i + 1$.

Theorem

For every Turing machine there exists normalized Turing machine, computing the same function.

Theorem (Hamkins, Miasnikov)

The Halting Problem for Turing machines with one-way tape is generically decidable.

Theorem (Hamkins, Miasnikov)

The Halting Problem for Turing machines with one-way tape is generically decidable.

Theorem (Rybalov)

The Halting Problem for normalized Turing machines is super undecidable.

Cloning of Turing machines

Cloning

Cloning C adds new states q_{n+1}, \ldots, q_{n+m} to machine M with program

$$egin{aligned} & (q_1,0) o (q_{j_1},t_1,D_1), \ & (q_1,1) o (q_{j_2},t_2,D_2), \ & \dots \ & (q_n,1) o (q_{j_{2n}},t_{2n},D_{2n}) \end{aligned}$$

and new arbitrary normalized commands for new states:

$$egin{aligned} & (q_{n+1},0)
ightarrow (q_{k_1},u_1,E_1), \ & (q_{n+1},1)
ightarrow (q_{k_2},u_2,E_2), \ & \dots \ & (q_{n+m},1)
ightarrow (q_{k_{2m}},u_{2m},E_{2m}) \end{aligned}$$

(▲ 国) (▲ 国)

Cloning of Turing machines

Cloning

Cloning C adds new states q_{n+1}, \ldots, q_{n+m} to machine M with program

$$egin{aligned} & (q_1,0) o (q_{j_1},t_1,D_1), \ & (q_1,1) o (q_{j_2},t_2,D_2), \ & \dots \ & (q_n,1) o (q_{j_{2n}},t_{2n},D_{2n}) \end{aligned}$$

and new arbitrary normalized commands for new states:

$$egin{aligned} & (q_{n+1},0)
ightarrow (q_{k_1},u_1,E_1), \ & (q_{n+1},1)
ightarrow (q_{k_2},u_2,E_2), \ & \dots \ & (q_{n+m},1)
ightarrow (q_{k_{2m}},u_{2m},E_{2m}) \end{aligned}$$

Theorem

For every machine M the clone C(M) is not negligible.

Amplification of algorithmic problems: undecidable problen

Example 2: First order theory of Arithmetic

Theory $Th(\mathbb{N})$

- Input: A first-order formula Φ of the language $\{+, -, \times, 0, 1\}$.
- Output:
 - 1, if Φ is true over \mathbb{N} ,
 - 0, otherwise.

Theorem (Church)

 $Th(\mathbb{N})$ is undecidable.

Representation of formulas

$$\forall x_1 \forall x_2 \exists x_3 (((x_1 = x_2) \lor (x_2 = x_1 + x_3)) \& (x_1 = x_2 x_3)) \lor (x_3 \neq x_2 x_1)$$

э

• = • • = •

A formula representation is **normalized** if for every variable $x_i, i > 1$ there exists variable x_{i-1} which is the same leaf as x_i , or to the left leaf.

$$\forall x_1 \forall x_2 \exists x_3 (((x_1 = x_3) \lor (x_3 = x_1 + x_2)) \& (x_1 = x_2 x_3)) \lor (x_2 \neq x_3 x_1)$$

$$\forall x_1 \forall x_3 \exists x_2 (((x_1 = x_2) \lor (x_2 = x_1 + x_3)) \& (x_1 = x_2 x_3)) \lor (x_3 \neq x_2 x_1)$$

Theorem

For every formula there exists equivalent normalized formula.

伺 ト イヨト イヨト

Generic first-order theory of Arithmetic

Theorem

 $Th(\mathbb{N})$ is super undecidable.

▶ 《문▶ 《문▶

Cloning

For $\Phi = Q_1 x_1 \dots Q_t x_t \phi$ the clone $C(\Phi)$ is the set of formulas

$$\Big\{Q_1x_1\ldots Q_tx_tQ_{t+1}x_{t+1}\ldots Q_{3n}x_{3n}\Big(\phi \lor ((x_1 \neq x_1) \land \psi)\Big)\Big\},\$$

where ψ is arbitrary quantifier-free normalized formula on x_1, \ldots, x_n and quantifiers Q_{t+1}, \ldots, Q_n are arbitrary.

• • = • • = •

Theorem

For every formula Φ the set $C(\Phi)$ is not negligible.

Image: A image: A

Example 3: Word problem for semigroups

 $S = \langle a_1, \ldots, a_m | R \rangle$ – a semigroup with undecidable word problem.

Theorem (Myasnikov, Rybalov)

Word problem in the semigroup $S^+(x) = \langle A, x | R, xa_i = x, xx = x \rangle$ is super undecidable

Cloning of words

$$C(w_1, w_2) = (w_1 \times v, w_2 \times u),$$

where v and u are arbitrary words over alphabet $\{a_1, \ldots, a_m, x\}$.