Amplification of algorithmic problems: undecidable problems

Alexander Rybalov

Sobolev Institute of Mathematics, Omsk

September, 2016
Algorithm works correctly on all inputs.
Algorithm works correctly on **almost all** inputs but can ignore some.
Definition

Let I be all inputs, I_n — all inputs of size n. **Asymptotic density** of set $S \subseteq I$

$$
\mu(S) = \lim_{n \to \infty} \frac{|S \cap I_n|}{|I_n|}.
$$
Asymptotic density

Definition

Let I be all inputs, I_n — all inputs of size n. **Asymptotic density** of set $S \subseteq I$

$$
\mu(S) = \lim_{n \to \infty} \frac{|S \cap I_n|}{|I_n|}.
$$

Remark

$$
\frac{|S \cap I_n|}{|I_n|}
$$

is the probability to get an input from S during random and uniform generation of inputs of size n.
Generic sets

Definition

Set $S \subseteq I$ is called

- **generic** if $\mu(S) = 1$,
Generic sets

Definition

Set $S \subseteq I$ is called
- **generic** if $\mu(S) = 1$,
- **negligible** if $\mu(S) = 0$.

Alexander Rybalov

Amplification of algorithmic problems: undecidable problems
Definition
Set $S \subseteq I$ is called **generically decidable** if there exists a decidable generic set $G \subseteq I$ such that $S \cap G$ is decidable.
Definition

Set $S \subseteq I$ is called **generically decidable** if there exists a decidable generic set $G \subseteq I$ such that $S \cap G$ is decidable.

Definition

Set $S \subseteq I$ is called **super undecidable** if it is not generically decidable.
Definition

Let I and J be input sets. Function $C : I \rightarrow P(J)$ is called cloning I to J if

1. $\forall x, y \in I \; x \neq y \rightarrow C(x) \cap C(y) = \emptyset$

2. There is an algorithm $E : I \times \mathbb{N} \rightarrow J$ such that for all $x \in I$

$$C(x) = \{ E(x, 0), E(x, 1), \ldots, \}$$
Definition

Let I and J be input sets. Function $C : I \rightarrow P(J)$ is called cloning I to J if

1. $\forall x, y \in I \ x \neq y \rightarrow C(x) \cap C(y) = \emptyset$

2. There is an algorithm $E : I \times \mathbb{N} \rightarrow J$ such that for all $x \in I$

$$C(x) = \{E(x, 0), E(x, 1), \ldots, \}$$

Definition

Cloning of $S \subseteq I$ is $C(S) = \bigcup_{x \in S} C(x)$.
Generic amplification

Definition
Let I and J be input sets. Function $C : I \rightarrow P(J)$ is called cloning I to J if
1. $\forall x, y \in I \ x \neq y \rightarrow C(x) \cap C(y) = \emptyset$
2. There is an algorithm $E : I \times \mathbb{N} \rightarrow J$ such that for all $x \in I$
 $$C(x) = \{E(x, 0), E(x, 1), \ldots, \}$$

Definition
Cloning of $S \subseteq I$ is $C(S) = \bigcup_{x \in S} C(x)$.

Definition
Cloning C is non-negligible if $\mu(C(x)) > 0$ for all $x \in I$.
Generic amplification

Alexander Rybalov

Amplification of algorithmic problems: undecidable problems
How to amplify undecidability?

Theorem (Miasnikov, Rybalov, 2008)

Let $C : I \rightarrow P(J)$ be a non-negligible cloning and $S \subseteq I$ is undecidable. Then $C(S)$ is super undecidable.
Idea of proof

Alexander Rybalov

Amplication of algorithmic problems: undecidable problems
Idea of proof

Alexander Rybalov

Amplication of algorithmic problems: undecidable problems
Example 1: the Halting Problem

Halting Problem

- **Input:** A Turing machine M over alphabet $\{0, 1\}$.
- **Output:**

 1, if M halts on 0,

 0, if M does not halt on 0.

Theorem (Turing)

The Halting Problem is algorithmically undecidable.
Representation of Turing machines

States

Non-final states q_1, \ldots, q_n. Final state q_0. Size of Turing machine is the number of non-final states.

Program

$$(q_1, 0) \rightarrow (q_{j_1}, t_1, D_1),$$
$$(q_1, 1) \rightarrow (q_{j_2}, t_2, D_2),$$
$$\ldots$$
$$(q_n, 1) \rightarrow (q_{j_{2n}}, t_{2n}, D_{2n})$$

$t_i \in \{0, 1\}, \ D_i \in \{R, L\} – shift.$
Normalized Turing machines

Definition

Turing machine M is normalized, if for every state q_i corresponding commands have the form

$$(q_i, 0) \rightarrow (q_j, t_1, D_1),$$
$$(q_i, 1) \rightarrow (q_k, t_2, D_2),$$

where $j, k \leq 2i + 1$.

Theorem

For every Turing machine there exists normalized Turing machine, computing the same function.
Theorem (Hamkins, Miasnikov)

The Halting Problem for Turing machines with one-way tape is generically decidable.
Theorem (Hamkins, Miasnikov)

The Halting Problem for Turing machines with one-way tape is generically decidable.

Theorem (Rybalov)

The Halting Problem for normalized Turing machines is super undecidable.
Cloning of Turing machines

Cloning

Cloning C adds new states q_{n+1}, \ldots, q_{n+m} to machine M with program

\[(q_1, 0) \rightarrow (q_{j_1}, t_1, D_1), \]
\[(q_1, 1) \rightarrow (q_{j_2}, t_2, D_2), \]
\[\ldots \]
\[(q_n, 1) \rightarrow (q_{j_{2n}}, t_{2n}, D_{2n}) \]

and new arbitrary normalized commands for new states:

\[(q_{n+1}, 0) \rightarrow (q_{k_1}, u_1, E_1), \]
\[(q_{n+1}, 1) \rightarrow (q_{k_2}, u_2, E_2), \]
\[\ldots \]
\[(q_{n+m}, 1) \rightarrow (q_{k_{2m}}, u_{2m}, E_{2m}) \]

Theorem

For every machine M the clone $C(M)$ is not negligible.
Cloning of Turing machines

Cloning

Cloning C adds new states q_{n+1}, \ldots, q_{n+m} to machine M with program

\[(q_1, 0) \rightarrow (q_{j_1}, t_1, D_1),\]
\[(q_1, 1) \rightarrow (q_{j_2}, t_2, D_2),\]
\[\ldots\]
\[(q_n, 1) \rightarrow (q_{j_{2n}}, t_{2n}, D_{2n})\]

and new arbitrary normalized commands for new states:

\[(q_{n+1}, 0) \rightarrow (q_{k_1}, u_1, E_1),\]
\[(q_{n+1}, 1) \rightarrow (q_{k_2}, u_2, E_2),\]
\[\ldots\]
\[(q_{n+m}, 1) \rightarrow (q_{k_{2m}}, u_{2m}, E_{2m})\]

Theorem

For every machine M the clone $C(M)$ is not negligible.
Example 2: First order theory of Arithmetic

Theory $Th(\mathbb{N})$

- Input: A first-order formula Φ of the language $\{+, -, \times, 0, 1\}$.
- Output:
 - 1, if Φ is true over \mathbb{N},
 - 0, otherwise.

Theorem (Church)

$Th(\mathbb{N})$ is undecidable.
∀x_1 ∀x_2 ∃x_3 (((x_1 = x_2) ∨ (x_2 = x_1 + x_3)) & (x_1 = x_2x_3)) ∨ (x_3 ≠ x_2x_1)

Alexander Rybalov

Amplification of algorithmic problems: undecidable problems
A formula representation is **normalized** if for every variable $x_i, i > 1$ there exists variable x_{i-1} which is the same leaf as x_i, or to the left leaf.

\[
\forall x_1 \forall x_2 \exists x_3 (((x_1 = x_3) \lor (x_3 = x_1 + x_2)) \land (x_1 = x_2 x_3)) \lor (x_2 \neq x_3 x_1)
\]

\[
\forall x_1 \forall x_3 \exists x_2 (((x_1 = x_2) \lor (x_2 = x_1 + x_3)) \land (x_1 = x_2 x_3)) \lor (x_3 \neq x_2 x_1)
\]

Theorem

For every formula there exists equivalent normalized formula.
Theorem

$Th(\mathbb{N})$ is super undecidable.
Cloning of formulas

For $\Phi = Q_1 x_1 \ldots Q_t x_t \phi$ the clone $C(\Phi)$ is the set of formulas

$$\left\{ Q_1 x_1 \ldots Q_t x_t Q_{t+1} x_{t+1} \ldots Q_{3n} x_{3n} \left(\phi \lor \left((x_1 \neq x_1) \land \psi \right) \right) \right\},$$

where ψ is arbitrary quantifier-free normalized formula on x_1, \ldots, x_n and quantifiers Q_{t+1}, \ldots, Q_n are arbitrary.
Theorem

For every formula Φ the set $C(\Phi)$ is not negligible.
Example 3: Word problem for semigroups

\[S = \langle a_1, \ldots, a_m | R \rangle \] – a semigroup with undecidable word problem.

Theorem (Myasnikov, Rybalov)

Word problem in the semigroup \(S^+(x) = \langle A, x | R, xa_i = x, xx = x \rangle \) is super undecidable

Cloning of words

\[C(w_1, w_2) = (w_1xv, w_2xu), \]

where \(v \) and \(u \) are arbitrary words over alphabet \(\{ a_1, \ldots, a_m, x \} \).