Amplification of algorithmic problems: undecidable problems

Alexander Rybalov

Sobolev Institute of Mathematics, Omsk
September, 2016

Classical approach

Algorithm works correctly on all inputs.

Generic approach

Algorithm works correctly on almost all inputs but can ignore some.

Asymptotic density

Definition

Let I be all inputs, I_{n} - all inputs of size n. Asymptotic density of set $S \subseteq 1$

$$
\mu(S)=\lim _{n \rightarrow \infty} \frac{\left|S \cap I_{n}\right|}{\left|I_{n}\right|} .
$$

Asymptotic density

Definition

Let I be all inputs, I_{n} - all inputs of size n. Asymptotic density of set $S \subseteq 1$

$$
\mu(S)=\lim _{n \rightarrow \infty} \frac{\left|S \cap I_{n}\right|}{\left|I_{n}\right|} .
$$

Remark

$\frac{\left|S \cap I_{n}\right|}{\left|I_{n}\right|}$ is the probability to get an input from S during random and uniform generation of inputs of size n.

Generic sets

Definition

Set $S \subseteq 1$ is called

- generic if $\mu(S)=1$,

Generic sets

Definition

Set $S \subseteq I$ is called

- generic if $\mu(S)=1$,
- negligible if $\mu(S)=0$.

Generic decidability and undecidability

Definition

Set $S \subseteq I$ is called generically decidable if there exists a decidable generic set $G \subseteq I$ such that $S \cap G$ is decidable.

Generic decidability and undecidability

Definition

Set $S \subseteq I$ is called generically decidable if there exists a decidable generic set $G \subseteq I$ such that $S \cap G$ is decidable.

Definition

Set $S \subseteq I$ is called super undecidable if it is not generically decidable.

Generic amplification

Definition

Let I and J be input sets. Function $C: I \rightarrow P(J)$ is called cloning I to J if
(1) $\forall x, y \in I x \neq y \rightarrow C(x) \cap C(y)=\emptyset$
(2) There is an algorithm $E: I \times \mathbb{N} \rightarrow J$ such that for all $x \in I$

$$
C(x)=\{E(x, 0), E(x, 1), \ldots,\}
$$

Generic amplification

Definition

Let I and J be input sets. Function $C: I \rightarrow P(J)$ is called cloning I to J if
(1) $\forall x, y \in I x \neq y \rightarrow C(x) \cap C(y)=\emptyset$
(2) There is an algorithm $E: I \times \mathbb{N} \rightarrow J$ such that for all $x \in I$

$$
C(x)=\{E(x, 0), E(x, 1), \ldots,\}
$$

Definition

Cloning of $S \subseteq I$ is $C(S)=\bigcup_{x \in S} C(x)$.

Generic amplification

Definition

Let I and J be input sets. Function $C: I \rightarrow P(J)$ is called cloning I to J if
(1) $\forall x, y \in I x \neq y \rightarrow C(x) \cap C(y)=\emptyset$
(2) There is an algorithm $E: I \times \mathbb{N} \rightarrow J$ such that for all $x \in I$

$$
C(x)=\{E(x, 0), E(x, 1), \ldots,\}
$$

Definition

Cloning of $S \subseteq I$ is $C(S)=\bigcup_{x \in S} C(x)$.

Definition

Cloning C is non-negligible if $\mu(C(x))>0$ for all $x \in I$.

Generic amplification

How to amplify undecidability?

Theorem (Miasnikov, Rybalov, 2008)

Let $C: I \rightarrow P(J)$ be a non-negligible cloning and $S \subseteq I$ is undecidable. Then $C(S)$ is super undecidable.

Idea of proof

Idea of proof

Example 1: the Halting Problem

Halting Problem

- Input: A Turing machine M over alphabet $\{0,1\}$.
- Output:

1 , if M halts on 0 ,
0 , if M does not halt on 0 .

Theorem (Turing)

The Halting Problem is algorithmically undecidable.

Representation of Turing machines

States

Non-final states q_{1}, \ldots, q_{n}. Final state q_{0}. Size of Turing machine is the number of non-final states.

Program

$$
\begin{aligned}
& \left(q_{1}, 0\right) \rightarrow\left(q_{j_{1}}, t_{1}, D_{1}\right), \\
& \left(q_{1}, 1\right) \rightarrow\left(q_{j_{2}}, t_{2}, D_{2}\right), \\
& \ldots \\
& \left(q_{n}, 1\right) \rightarrow\left(q_{j_{2 n}}, t_{2 n}, D_{2 n}\right)
\end{aligned}
$$

$$
t_{i} \in\{0,1\}, D_{i} \in\{R, L\}-\text { shift. }
$$

Normalized Turing machines

Definition

Turing machine M is normalized, if for every state q_{i} corresponding commands have the form

$$
\begin{aligned}
& \left(q_{i}, 0\right) \rightarrow\left(q_{j}, t_{1}, D_{1}\right), \\
& \left(q_{i}, 1\right) \rightarrow\left(q_{k}, t_{2}, D_{2}\right),
\end{aligned}
$$

where $j, k \leq 2 i+1$.

Theorem

For every Turing machine there exists normalized Turing machine, computing the same function.

Generic Halting Problem

Theorem (Hamkins, Miasnikov)

The Halting Problem for Turing machines with one-way tape is generically decidable.

Generic Halting Problem

Theorem (Hamkins, Miasnikov)

The Halting Problem for Turing machines with one-way tape is generically decidable.

Theorem (Rybalov)

The Halting Problem for normalized Turing machines is super undecidable.

Cloning of Turing machines

Cloning

Cloning C adds new states q_{n+1}, \ldots, q_{n+m} to machine M with program

$$
\begin{aligned}
& \left(q_{1}, 0\right) \rightarrow\left(q_{j_{1}}, t_{1}, D_{1}\right), \\
& \left(q_{1}, 1\right) \rightarrow\left(q_{j_{2}}, t_{2}, D_{2}\right), \\
& \ldots \\
& \left(q_{n}, 1\right) \rightarrow\left(q_{j_{2 n}}, t_{2 n}, D_{2 n}\right)
\end{aligned}
$$

and new arbitrary normalized commands for new states:

$$
\begin{aligned}
& \left(q_{n+1}, 0\right) \rightarrow\left(q_{k_{1}}, u_{1}, E_{1}\right), \\
& \left(q_{n+1}, 1\right) \rightarrow\left(q_{k_{2}}, u_{2}, E_{2}\right), \\
& \ldots \\
& \left(q_{n+m}, 1\right) \rightarrow\left(q_{k_{2 m}}, u_{2 m}, E_{2 m}\right)
\end{aligned}
$$

Cloning of Turing machines

Cloning

Cloning C adds new states q_{n+1}, \ldots, q_{n+m} to machine M with program

$$
\begin{aligned}
& \left(q_{1}, 0\right) \rightarrow\left(q_{j_{1}}, t_{1}, D_{1}\right), \\
& \left(q_{1}, 1\right) \rightarrow\left(q_{j_{2}}, t_{2}, D_{2}\right), \\
& \ldots \\
& \left(q_{n}, 1\right) \rightarrow\left(q_{j_{2 n}}, t_{2 n}, D_{2 n}\right)
\end{aligned}
$$

and new arbitrary normalized commands for new states:

$$
\begin{aligned}
& \left(q_{n+1}, 0\right) \rightarrow\left(q_{k_{1}}, u_{1}, E_{1}\right), \\
& \left(q_{n+1}, 1\right) \rightarrow\left(q_{k_{2}}, u_{2}, E_{2}\right), \\
& \ldots \\
& \left(q_{n+m}, 1\right) \rightarrow\left(q_{k_{2 m}}, u_{2 m}, E_{2 m}\right)
\end{aligned}
$$

Theorem

For every machine M the clone $C(M)$ is not negligible.

Example 2: First order theory of Arithmetic

Theory $\operatorname{Th}(\mathbb{N})$

- Input: A first-order formula Φ of the language $\{+,-, \times, 0,1\}$.
- Output:

1 , if Φ is true over \mathbb{N},
0 , otherwise.

Theorem (Church)

$T h(\mathbb{N})$ is undecidable.

Representation of formulas

$$
\forall x_{1} \forall x_{2} \exists x_{3}\left(\left(\left(x_{1}=x_{2}\right) \vee\left(x_{2}=x_{1}+x_{3}\right)\right) \&\left(x_{1}=x_{2} x_{3}\right)\right) \vee\left(x_{3} \neq x_{2} x_{1}\right)
$$

Normalized representation

Definition

A formula representation is normalized if for every variable $x_{i}, i>1$ there exists variable x_{i-1} which is the same leaf as x_{i}, or to the left leaf.

$$
\begin{aligned}
& \forall x_{1} \forall x_{2} \exists x_{3}\left(\left(\left(x_{1}=x_{3}\right) \vee\left(x_{3}=x_{1}+x_{2}\right)\right) \&\left(x_{1}=x_{2} x_{3}\right)\right) \vee\left(x_{2} \neq x_{3} x_{1}\right) \\
& \forall x_{1} \forall x_{3} \exists x_{2}\left(\left(\left(x_{1}=x_{2}\right) \vee\left(x_{2}=x_{1}+x_{3}\right)\right) \&\left(x_{1}=x_{2} x_{3}\right)\right) \vee\left(x_{3} \neq x_{2} x_{1}\right)
\end{aligned}
$$

Theorem

For every formula there exists equivalent normalized formula.

Generic first-order theory of Arithmetic

Theorem

$T h(\mathbb{N})$ is super undecidable.

Cloning of formulas

Cloning

For $\Phi=Q_{1} x_{1} \ldots Q_{t} x_{t} \phi$ the clone $C(\Phi)$ is the set of formulas

$$
\left\{Q_{1} x_{1} \ldots Q_{t} x_{t} Q_{t+1} x_{t+1} \ldots Q_{3 n} x_{3 n}\left(\phi \vee\left(\left(x_{1} \neq x_{1}\right) \wedge \psi\right)\right)\right\},
$$

where ψ is arbitrary quantifier-free normalized formula on x_{1}, \ldots, x_{n} and quantifiers Q_{t+1}, \ldots, Q_{n} are arbitrary.

Cloning of formulas

Theorem

For every formula Φ the set $C(\Phi)$ is not negligible.

Example 3: Word problem for semigroups

$S=\left\langle a_{1}, \ldots, a_{m} \mid R\right\rangle-$ a semigroup with undecidable word problem.
Theorem (Myasnikov, Rybalov)
Word problem in the semigroup $S^{+}(x)=\left\langle A, x \mid R, x a_{i}=x, x x=x\right\rangle$ is super undecidable

Cloning of words

$$
C\left(w_{1}, w_{2}\right)=\left(w_{1} \times v, w_{2} \times u\right),
$$

where v and u are arbitrary words over alphabet $\left\{a_{1}, \ldots, a_{m}, x\right\}$.

